Layer-by-Layer Inkjet Printing of Fabricating Reduced Graphene-Polyoxometalate Composite Film for Chemical Sensors

Hui Zhang a,c, Anjian Xie c, Yuhua Shen a,b, Lingguang Qiu b, Xingyou Tian a

a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China. Fax: +86-0551-5108702; Tel: +86-0551-5108702; E-mail: zhhui@ahu.edu.cn; xytian@issp.ac.cn
b School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, P. R. China. Fax: +86-0551-5108702; Tel: +86-0551-5108702; E-mail: s_yuhua@163.com; lgqiu@ahu.edu.cn
c School of Physics and Materials Science, Anhui University, Hefei 230039, P. R. China. Fax: +86-0551-5108702; Tel: +86-0551-5108702; E-mail: anjx@163.com

Fig. S1. Fourier transform infrared (FTIR) spectra of original GO, pure PTA, GO/PTA and rGO/PTA composites. 1080 cm\(^{-1}\): the stretching vibration absorption of P–O bonds; 985 cm\(^{-1}\): the stretching mode of terminal W-O groups; 891 cm\(^{-1}\): the stretching mode of corner-sharing W-O-W bonds; 825 cm\(^{-1}\): the stretching mode of edge-sharing W-O-W bonds.
Fig. S2. XPS spectra of C 1s, P 2p and W 4f core level acquired from the as-prepared film before (a) and after (b) UV-irradiation.