Supplementary Information

Facile synthesis of platinum-lead oxide nanocomposite catalyst with high activity and durability for ethanol electrooxidation

Wei-Hua Yang,a,b Hong-Hui Wang,a De-Hao Chen,a Zhi-You Zhou,a and Shi-Gang Sun*a

a State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
b College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.

*Corresponding author Email: sgsun@xmu.edu.cn

1. Characterization of nm-Pt and nm-PbO₂

![Image](a) TEM (a, b) and histogram of cross-sectional diameter of nm-Pt and nm-PbO₂ (c, d). a, c nm-Pt; b, d nm-PbO₂

Figure S1. TEM (a, b) and histogram of cross-sectional diameter of nm-Pt and nm-PbO₂ (c, d). a, c nm-Pt; b, d nm-PbO₂
2. Transient current density curves of ethanol oxidation on Pt-PbOx NC, nm-Pt and Pt black catalysts

Figure S2. Transient current density curves of ethanol oxidation on Pt-PbOx NC (a), nm-Pt (c) and Pt black (e) catalysts recorded at different potentials in the range of 0 s to 600 s in a mixture of 0.1 M ethanol and 0.1 M KOH at room temperature. (d) and (f) are the corresponding 3D-plots of j-t-E recorded on nm-Pt and commercial Pt black catalysts for ethanol oxidation. (b) Schematic illustration of program potential applied for the electrocatalysis study.
3. Cyclic voltammogram of PbO₂

![Cyclic voltammogram of PbO₂](image)

Figure S3. CV plot of ethanol oxidation on pure PbO₂ electrode with a scan rate of 50 mV s⁻¹ in a mixture of 0.1 M ethanol and 0.1 M KOH at room temperature.