Order and Disorder Effects in Nano- ZrO$_2$ Investigated by

Micro- Raman and Spectrally and Temporarily Resolved Photoluminescence

Carmen Tiseanu a, Bogdan Cojocaru b, Vasile I. Parvulescu b, Margarita Sanchez Dominguez a,d, Philipp A. Primus e, Magali Boutonnet f

a National Institute for Laser, Plasma and Radiation Physics, P.O.Box MG-36, RO 76900, Bucharest-Magurele, Romania; b University of Bucharest, Department of Chemical Technology and Catalysis 4 – 12 Regina Elisabeta Bvd., Bucharest 030016, Romania; c Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), CIBER en Biotecnología, Biomateriales y Nanomedicina (CIBER BBN), Jordi Girona 18-26, 08034 Barcelona, SPAIN; d Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Unidad Monterrey; GENES-Group of Embedded Nanomaterials for Energy Scavenging, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, 66600 Apodaca, Nuevo León, MEXICO; e Institute of Chemistry, Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; f Kungliga Tekniska Högskolan (KTH), School of Chemistry, Div. of Chemical Technology, Teknikringen 42, SE-10044, Stockholm, Sweden.

Supplemental Information
Figure S1. STEM images of calcined pure zirconia samples (ZE) synthesized in o/w microemulsions. ZE-500: (a) bright field and (b) dark field. ZE-1000: (c) bright field and (d) dark field.

Figure S2. STEM images of calcined europium-doped zirconia (ZEB) samples synthesized in o/w microemulsions. 500/ZEB-500: (a) bright field and (b) dark field. 1000/ZEB-1000: (c) bright field and (d) dark field.
Textural characterization. Pure zirconia, ie ZE sample, after calcining at 350 °C exhibited a surface area of 253 m²g⁻¹ with an average pore size of 26.9 Å. Further calcinations at 500 and 1000 °C led to a strong decrease of the surface areas to 24 and 4 m²g⁻¹, respectively. Doping with europium (ZEB sample) was not generating important differences in the texture of these materials. Thus, the surface areas of the samples calcined at 350, 500 and 1000 °C corresponded to 248, 31 and 5 m²g⁻¹, that are in fact very similar.

Figure S3. TGA and DTA curves for pure (ZE, a) and europium doped zirconia (ZEB, b) samples.

Figure S4. PL excitation spectra of europium in ZEB-500 and ZEB-1000.
Figure S5. (a) Steady state PL spectra of ZEB-500 and ZEB-1000; (b) Time-resolved PL spectra of ZEB-1000 upon excitation at 240 nm.

Figure S6. From Left to Right: PL decays of ZEB-750, ZEB-900 and ZEB-1000. Emission and excitation wavelengths are indicated on the Figures.

Figure S7. Evolution with delay time of the asymmetry ratio, R, of ZEB-500 and ZEB-1000.