Supplementary information for

Vacuum-ultraviolet circular dichroism reveals DNA duplex formation between short strands of adenine and thymine

Lisbeth Munksgaard Nielsen,* a Søren Vrønning Hoffmann a,b and Steen Brøndsted Nielsen b

a Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark. Tel: +45 87155693; E-mail: lisbeth@phys.au.dk
b Institute for Storage Ring Facilities, Aarhus University, DK-8000 Aarhus C, Denmark
Fig. S1 Absorption melting curve (260 nm) of 7.7 µM (AT)$_7$ in a 0.1 M NaF(aq) solution. The open circles are data measured using a heat bath and the filled circles are data measured using a peltier heating element.

Fig. S2 (a) SRCD spectra of (AT)$_5$ in a 0.1 M NaF(aq) solution at different temperatures. (b) SRCD spectra of (AT)$_5$ in water at different temperatures. The temperature scale runs from 6°C (darkest blue) to 63°C (darkest red).
Fig. S3 (a) SRCD spectra of (AT)$_7$ in a 0.1 M NaF(aq) solution at different temperatures. (b) SRCD spectra of (AT)$_7$ in water at different temperatures. The temperature scale runs from 6°C (darkest blue) to 77°C (darkest red).

Fig. S4 (a) SRCD spectra of (AATT)$_4$ in a 0.1 M NaF(aq) solution at different temperatures. (b) SRCD spectra of (AATT)$_4$ in water at different temperatures. The temperature scale runs from 6°C (darkest blue) to 77°C (darkest red).
Fig. S5 Basis spectra φ_1 (a) and φ_2 (b) from the analysis on the SRCD spectra of the strands indicated.

Fig. S6 Corresponding coefficients to the basis spectra in Fig.S5.