Electronic Supplementary Information

Mesoporous α-Fe$_2$O$_3$ Thin Films Synthesized via the Sol-gel Process for Light-driven Water Oxidation

Wael Hamd,1 Saioa Cobo,2 Jennifer Fize,2 Gianguido Baldinozzi,3 Wilfrid Schwarz,4 Maryse Reymerrier,4 Alexandre Pereira,4 Marc Fontecave,2,5 Vincent Artero,2 Christel Laberty-Robert1 and Clement Sanchez1

1. Laboratoire de Chimie de la Matière Condensée de Paris-UMR7574, Université Paris 6, Collège de France, 11 place Marcelin Berthelot 75005 Paris

2. Laboratoire de Chimie et Biologie des Métaux, Université Grenoble 1, CNRS, CEA, 17 rue des Martyrs 38054 Grenoble cedex 9

3. SPMS, MFE, CNRS–École Centrale Paris & CEA, DEN, DMN, 91191 Gif–sur–Yvette, France

4. CEA Institut Liten (DTNM/LTS), 17 rue des Martyrs 38054 Grenoble cedex 9

5. Collège de France, 11 Place Marcelin Berthelot, 75005 Paris
<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Crystallite size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>14</td>
</tr>
<tr>
<td>425</td>
<td>15</td>
</tr>
<tr>
<td>450</td>
<td>18</td>
</tr>
<tr>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>600</td>
<td>47</td>
</tr>
</tbody>
</table>

Table S1. Evolution of the size of the crystallites in the hematite films as a function of the sintering temperature.

Figure S1. Size distribution of the micelles in the sol-gel solution from dynamic light-scattering measurements.

Figure S2. Refractive index (blue) and its derivate as functions of the temperature for hybrid organic-inorganic films: variation of the thickness (dark blue) and derivate of the thickness (red) as functions of the temperature.
Figure S3. SEM images collected for α-Fe$_2$O$_3$ thin films heat treated at various temperatures in air.

Figure S4. X-ray photoelectron spectroscopy survey data for the α-Fe$_2$O$_3$ thin films sintered at 500°C (blue) and 750°C (green). The presence of Sn dopant is only observed in the sample sintered at 750°C.

Figure S5. FE-SEM images of Co-modified 500 °C heat-treated 5-layersmesoporous films. Left. Impregnated; Middle electro-assisted deposition; Right. photo-assisted deposition.
Figure S6. Current density vs applied potential (j-V) plots recorded at 5 mV.s\(^{-1}\) in 0.1 M KOH (pH 13) in the dark (dashed) and under illumination (plain) for pristine 750 °C heat-treated 5-layers mesoporous films. The response for the same Co-impregnated sample is shown in blue.

Figure S7. Current density vs applied potential (j-V) plots recorded at 5 mV.s\(^{-1}\) in 0.1 KPi buffer (pH = 8) in the dark (dashed) and under illumination (plain) for pristine 750 °C heat-treated 5-layers mesoporous films.
Figure S8. Current density vs applied potential (j-V) plots recorded at 5 mV.s⁻¹ in 0.1 KPi buffer (pH = 8) in the dark (dashed) and under illumination (plain) measured for 500°C heat-treated 5-layers mesoporous nanostructured hematite films decorated with electrodeposited O₂-CoCat.

![Graph showing j-V plots](image)

Figure S9. Current density vs applied potential (j-V) plots recorded at 5 mV.s⁻¹ in 0.1 KPi buffer (pH = 8) in the dark (dashed) and under illumination (plain) measured for 500°C heat-treated 5-layers mesoporous nanostructured hematite films decorated with photo-electro deposition O₂-CoCat.

Figure S10. Schematic setup for incident-photon-to-current efficiency measurement.

![Schematic diagram](image)

Figure S11. Wavelength-dependent optical power reaching the sample during the ICPE measurement.