Supplementary Materials

Calculation of pore diffusivity of myoglobin in C1a particles.

Figure S1 illustrates the linear dependence of $\ln(1-F)$ from time, in accordance with Equation (4) (see Section III b). The slope of the linear dependence $-\pi^2 D_p / R^2$ equals to -0.0023 min$^{-1}$ or -3.8×10^{-5} s$^{-1}$. Taking R as 25 µm = 25×10^{-4} cm, one gets $R^2 = 625 \times 10^{-8}$ cm2. Therefore, $D_p = 3.8 \times 10^{-5} \text{ s}^{-1} \times R^2 / \pi^2 = 3.8 \times 10^{-5} \text{ s}^{-1} \times 625 \times 10^{-8} \text{ cm}^2 / 9.86 = 2.4 \times 10^{-11} \text{ cm}^2/\text{s}$.

![Graph showing $\ln(1-F)$ vs. time](image)

Fig. S1. Dependence of $\ln(1-F)$ from time.