Electronic Supplementary Information

"Ultrafast photoinduced dynamics of the 3,6-diaminoacridinium derivative ATTO 465 in solution"

by Jutta Arden-Jacob, a,b Karl-Heinz Drechsle, a,b Sergey I. Druzhinin, a Maria Ekimova, a
Oliver Flender, a Thomas Lenzer, a,* Kawon Oum, a and Mirko Scholz c

a Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany. Tel: +49 271 740 2803; Fax: +49 271 740 2805; E-mail: lenzer@chemie.uni-siegen.de, oum@chemie.uni-siegen.de
b ATTO-TEC GmbH, Am Eichenhang 50, 57076 Siegen, Germany
c Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany

Fig. S1 Steady-state absorption coefficient spectra of ATTO 465 in ethanol, methanol and water.
Fig. S2 Normalized steady-state absorption spectra of the $S_0 \rightarrow S_1$ band of ATTO 465 for all solvents of Table 1 (main text).

Fig. S3 Normalized steady-state fluorescence spectra of the $S_1 \rightarrow S_0$ band of ATTO 465 for all solvents of Table 1 (main text). For the sake of clarity, straylight peaks originating from the excitation light were removed or subtracted in the region 21000–22000 cm$^{-1}$.
Fig. S4 Comparison of PSCP spectra for ATTO 465 in water (black), THF (red) and ethanol (blue), each averaged in the range 100–200 ps. $\lambda_{\text{pump}} = 481$ nm (THF, water) or 489 nm (ethanol).

Fig. S5 Comparison of single wavelength transient absorption signals in water for different concentrations of ATTO 465. Black: ca. $3 \cdot 10^{-5}$ M; red: ca. $3 \cdot 10^{-6}$ M. $\lambda_{\text{pump}} = 430$ nm, $\lambda_{\text{probe}} = 860$ nm.