Supplementary Information for

Prediction of (TiO$_2$)$_x$(Cu$_2$O)$_y$ Alloys for Photoelectrochemical Water Splitting

Heng-Rui Liua, Ji-Hui Yanga, Yue-Yu Zhanga, Shiyou Chenb, Aron Walshc, Hongjun Xianga, Xingao Gonga, and Su-Huai Weid

a Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, P. R. China

b Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, P. R. China

c Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

d National Renewable Energy Laboratory, Golden, Colorado 80401, USA
I. Partial density of states (PDOS) of (TiO$_2$)$_x$(Cu$_2$O)$_y$ alloys by the PBE functional

The energy levels of the VBM are set to zero. The red lines represent the p states, while the blue ones and the green ones represent the s states and the d states, respectively.

II. Band structure of selected (TiO$_2$)$_x$(Cu$_2$O)$_y$ alloys from the HSE06 calculations
The VBMs are set to zero. The fractional coordinates of the k-points are as follows: Γ (0.0, 0.0, 0.0), A (0.4444, 0.4444, 0.5), B (0.5, 0.0, 0.5), C (-0.3333, 0.1333, 0.06667), D (0.0, 0.4667, 0.0), M (0.5, 0.5, 0.5), X (-0.2333, 0.35, 0.0).