Supporting Information

„Molecular-Level Characterization of the Structure and the Surface Chemistry of Periodic Mesoporous Organosilicates DNP-Surface Enhanced NMR Spectroscopy.”

Wolfram R. Grüninga, Aaron J. Rossinib, Alexandre Zagdounb, David Gajanb, Anne Lesageb, Lyndon Emsley*b, Christophe Copéret*a

a) Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland. Email: ccoperet@ethz.ch
b) Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France. Email: lyndon.emsley@ens-lyon.fr

Table of Contents
a) Additional Figures
b) Experimental Details
c) Spectra
Figure S1: 13C-NMR spectra: a) DNP-SENS µ-wave on spectrum of ppy-PMO (16 mM hCTbK / C₂H₂Cl₄, νrot = 8 kHz, 32 scans, S/N = 125); b) µ-wave off spectrum of ppy-PMO (16 mM hCTbK / C₂H₂Cl₄, νrot = 8 kHz, 256 scans); c) CP-MAS of ppy-PMO (neat, νrot = 10 kHz, 7888 scans, S/N = 96); d) hTS-ppy (CDCl₃, 1024 scans); X: solvent resonance, *: spinning-side-band

13C-NMR (100 MHz, CPMAS 10 kHz)

Figure S2: 13C-NMR spectra: CP-MAS of ppy-PMO (neat, νrot = 10 kHz, 7888 scans, τcp=2.5 ms, S/N = 96); full width of c) in Figure S1
Figure S3: Decomposition of 13C-NMR of ppy-PMO; the experimental spectrum (Fig S2) (light green) was fitted with nine individual sites using dmfit.

Figure S4: Deconvolution of 15N CPMAS DNP SENS spectra of ppy-PMO (top) and IrCp*-ppy-PMO (bottom). Integrated intensities (II) for each of the sites are given.
Figure S5: μwave on (red) and off (blue, x10) DNP NMR-spectra of the parent material ppy-PMO: a) 1H $\varepsilon_H = 130$; b) 13C $\varepsilon_{CP(solv.)} = 128$, $\varepsilon_{CP(mat.)} = 85$; c) 29Si $\varepsilon_{SiCP} = 106$.

Figure S6: μwave on (red) and off (blue, x10) DNP NMR-spectra of IrCp*-ppy-PMO a) 1H $\varepsilon_H = 46$; b) 13C $\varepsilon_{CP(solv.)} = 100$, $\varepsilon_{CP(mat.)} = 32$.
Figure S7: Assignment of the chemical shifts in the aromatic core and metal complexes a) ^{1}H bTS-ppy, b) ^{1}H IrCp*-bTS-ppy, c) ^{13}C & ^{15}N bTS-ppy, d) ^{13}C & ^{15}N IrCp*-bTS-ppy, e) ^{13}C & ^{15}N ppy-PMO, f) ^{13}C & ^{15}N IrCp*-ppy-PMO. Other resonances are covered by ppy-PMO.
Figure S8: a) 1H-13C CPMAS echo detected HETCOR pulse sequence. For the acquisition of one dimensional spectra the e-DUMBO$_{2z}$ block on 1H was excluded. b) Pseudo-2D spectrum showing the intensity of the echo detected 13C CPMAS spectra as a function of the echo delay (τ_d) acquired with microwave irradiation. c) Comparison of standard 13C CPMAS spectrum (upper) and echo detected spectra acquired with $\tau_d = 2.125$ ms (middle) and $\tau_d = 8.125$ ms (lower). d) The intensity of the several different carbon resonances in the echo detected spectra as a function of $2\tau_d$ (open points). Red dashed lines represent fits to stretched exponential functions of the form, $I(t) = \exp\left(-t/\tau_2^\beta\right)$. The 1,1,2,2-tetrachloroethane ($\text{C}_2\text{H}_2\text{Cl}_4$) possesses a short $\tau'_2(^{13}\text{C})$ which enables efficient suppression of the solvent resonances with minimal signal losses.
b) Experimental Details

General

Chemicals were of reagent grade or better and purchased from, ABCR, Acros Organics, Sigma-Aldrich or TCI and used without further purification. All air or water sensitive manipulations were carried out under argon using Schlenk-techniques or gloveboxes. Elemental analysis was performed by Mikroanalytisches Labor Pascher (Remagen, Germany). Nitrogen sorption experiments were performed on a BELsorp-mini II. Powder X-ray experiments were performed on a STOE Padi Diffractometer in Debye-Scherrer Mode (2θ) with a dectris Mythen 1K area detector using Cu K-α (ν = 1.54 Å) radiation.

Liquid-state NMR Experiments

1H, 13C, 15N, and 29Si-NMR spectra were recorded on Bruker DRX 200, DRX 300, and DRX 400 spectrometers. The samples were measured as solutions in the given solvent at room temperature in non-spinning mode. 1H, 13C chemical shifts are referenced relative to residual solvent peak; 15N chemical shifts were referenced to external NH3; 29Si chemical shifts were referenced to external tetramethylsilane. Chemical shifts for 15N were determined by measurement of 1H-15N HMBC and spectra. 29Si spectra were acquire using inverse gated decoupling pulse sequences. The multiplicities of the signals are abbreviated as follows: s = singlet, d = doublet, t = triplet, m = multiplet. The assignment of 1H and 13C chemical shifts was aided by standard 1H-13C HSQC, 1H-13C HMBC and 1H-1H COSY experiments. To establish close contacts 1H-1H NOESY and spectra were recorded. 1H-15N HMBC spectra were acquired on a Bruker DRX 300 or spectrometer equipped with a multinuclear inverse probe. A relaxation delay of 2.0 s was applied and a defocusing delay of 100 ms was chosen, corresponding to a coupling constant of 5 Hz. The number of scans per increment was 32 (2k data points), and 128 experiments were acquired in the second dimension. 1H-1H NOESY spectra were acquired on Bruker DRX 400 spectrometer equipped with a multinuclear inverse probe. A relaxation delay of 4.0 s was applied and the mixing time was 1.7 s. The number of scans per increment was 32 (2k data points) and 256 experiments were acquired in the second dimension.

DNP- Solid-State NMR Experiments

Standard cross-polarization (CP) was used for 1D carbon-13 and silicon-29 spectra. 13C and 29Si solid-state NMR experiments were performed on a 9.4 T Bruker Avance
III DNP spectrometer. For 13C CPMAS the 1H $\pi/2$ pulse length was 2.5 μs (100 kHz). A linear amplitude ramp (from 50% to 100% of the nominal RF field strength) was used for the 1H channel, with a 3.0 ms contact time and a nominal RF field amplitude of $v_1 = 68$ kHz for 1H and 50 kHz for 13C. SPINAL-644 proton decoupling was applied during the acquisition of the 13C signal with an RF field amplitude of $v_1 = 100$ kHz. The 13C acquisition time was 10 ms with 992 complex points.

For 29Si CPMAS the 1H $\pi/2$ pulse length was 2.5 μs (100 kHz). A linear amplitude ramp (from 50% to 100% of the nominal RF field strength) was used for the 1H channel, with a 2.0 ms contact time and a nominal RF field amplitude of $v_1 = 65$ kHz for 1H and 50 kHz for 29Si. SPINAL-64 proton decoupling was applied during the acquisition of the 29Si signal with an RF field amplitude of $v_1 = 100$ kHz. The 29Si acquisition time was 10 ms with 992 complex points.

15N CPMAS spectra were acquired on a 14.1 T Bruker Avance III DNP spectrometer. The 1H $\pi/2$ pulse length was 2.5 μs (100 kHz). A linear amplitude ramp (from 50% to 100% of the nominal RF field strength) was used for the 1H channel with a nominal RF field amplitude of $v_1 = 65$ kHz for 1H and 50 kHz for 15N. The 15N spectrum of ppy-PMO was acquired with a 12500 Hz sample spinning rate and a delay of 8 s in between each of 192 scans. A 1.5 ms contact time was used. The 15N spectrum of IrCp*-ppy-PMO was obtained by summing three individual spectra acquired with a 4 s recycle delay in between each of the 2048 scans, a 12500 Hz sample spinning rate and three different contact times. The three spectra were acquired with contact times of 1.5 ms, 2.5 ms and 4.0 ms to check for any variation in the relative intensity of the individual nitrogen resonances. However, the relative intensities did not vary with the contact time so the spectra were summed in order to improve the signal to noise ratio.

DNP enhancements

DNP enhancements were obtained by scaling the μwave-on spectrum to the same number of scans as the μwave-off spectrum and subsequent determination of the scaling factor to reach the same relative intensity. ε_{H} was measured on the solvent resonance at 6.3 ppm; carbon enhancements were measured on the solvent $\varepsilon_{CP(solv.)}$ and the aromatic carbon resonance $\varepsilon_{CP(mat.)}$ respectively; silicon-29 enhancement $\varepsilon_{Si\,CP}$ was measured on the T-site resonance.
Synthesis of ppy-PMO

In a 250 ml beaker stearyltrimethylammonium chloride (1.25 g, 3.6 mmol) was dissolved in water (78 mL) and sodium hydroxide (6 M, 1.3 mL), the resulting solution was stirred for 20 minutes. Then 5-(triethoxysilyl)-2-(4-triethoxysilylphenyl)-pyridine (1.36 g, 2.83 mmol) was added under rapid stirring, the resulting solution was stirred for 24 hours and then heated to 97°C under static conditions for 24 hours. The resulting white solid was then filtered and washed with water (35 mL x 3) and acetone (75 mL x 2). The resulting white powder was dried at 85°C under vacuum (10⁻⁵ mbar) for 16 hours. The material was suspended in ethanol (190 mL) and hydrochloric acid (2 M, 3.5 mL) and was stirred for 24 hours. After filtration the solid was washed with water (100 mL), aqueous sodium hydroxide (0.03 M, 50 mL), water (100 mL x 2), methanol (20 mL), and acetone (20 mL x 3). The material was dried at 85°C under vacuum (10⁻⁵ mbar) for 16 hours to give ppy-PMO (559 mg) as white powder. Elemental Analysis calculated for C₁₁H₇NSi₂O₃: C 51.3%, H 2.7%, N 5.4%, Si 21.8%, O 18.7%; found: C 48.0%, H 2.8%, N 5.3%, Si 20.3%, O 18.2%. BET surface area (N₂, 77 K) 873 m²/g.

Figure 9: a) ad-/desorption isotherm of ppy-PMO b) powder-XRD of ppy-PMO.
Precursor Synthesis

\[
\begin{align*}
\text{Br} & \quad \text{a} \quad \text{TMS} & \quad \text{b} \quad \text{TMS} & \quad \text{c} \quad \text{I} & \quad \text{d} \quad \text{Si(OEt)}_3 \\
\text{Br} & \quad & \quad & \quad & \\
\end{align*}
\]

Scheme 1: Synthetic route to precursor 6: a) 1) n-BuLi, -78°C; 2) TMSCl -78°C to 25°C; quant.; b) 1) n-BuLi, -78°C, 2) B(OMe)_3, -78° to 25°C, 49%; c) 2,5-dibromopyridine, Pd(PPh_3)_4, K_2CO_3, PhMe, H_2O, 83%; d) 1) n-BuLi, -78°C, 2) I_2, -78° to 25°C, quant.; e) ICl, Et_2O, CH_2Cl_2, 0°C, 98%; f) (EtO)_3SiH, [Rh(cod)(NCMe)_2]BF_4, NBu_4I, NEt_3, DMF, 80°C, 24h 52%

Synthesis of 4-trimethylsilylbromobenzene 1

A 500 mL two neck flask under argon was charged with 1,4-dibromobenzene (37.7 g, 160 mmol, 1.0 equiv.) and Et_2O (300 mL) was added. The resulting solution was cooled to -78°C (acetone, CO_2(s)) and n-butyllithium (1.6 M in hexanes, 100 mL, 160 mmol, 1.0 equiv.) was added dropwise over 10 minutes. The solution was stirred for 4 hours at -78°C before trimethylsilylchloride (23 mL, 176 mmol, 1.1 equiv.) was added. The solution was allowed to reach room temperature overnight and was then poured into water (400 mL). The phases were separated, the organic phase was washed with water (100 mL) and the combined aqueous phases were extracted with Et_2O (100 mL x 3). The organic phases were combined and dried over MgSO_4. Removal of the solvent yielded 1 (36.7 g, quant.) as colorless powder, which was used without further purification. \(^1\)H-NMR (300 MHz, CDCl_3) δ/ppm = 7.55-7.49 (m, 2H), 7.44-7.38 (m, 2H), 0.28 (s, 9H); \(^13\)C-NMR (75 MHz, CDCl_3) δ/ppm = 139.37, 135.06, 131.00, 123.69, -1.08.

Synthesis of 4-trimethylsilylphenylboronicacid 2

1 (36.7 g, 160 mmol, 1.0 equiv.) was dissolved in THF (800 mL) and cooled to -78°C (acetone, CO_2(s)). n-Butyllithium (1.6 M in hexanes, 100 mL, 160 mmol, 1.0 equiv.) was added dropwise and the solution stirred for 1.5 h. Then trimethylborate (20 mL, 176 mmol, 1.1 equiv.) was added over the course of 10 minutes and stirring was continued for 30 minutes at -78°C before the solution was allowed to reach room temperature overnight. It was then cooled to 0°C and aqueous HCl (1M, 500 mL) and EtOAc (200 mL) were added. Phases were separated and the aqueous phase was
extracted with EtOAc (200 mL x 3). The organic phases were combined and dried over MgSO₄. The solvent was removed and the resulting solid recrystallized from pentane to give 2 (15.2 g, 49%) as colorless needles. ¹H-NMR (300 MHz, CDCl₃) δ/ppm = 8.20 (d, 2H, J = 7.8 Hz), 7.68 (d, 2H, J = 7.8 Hz), 0.35 (s, 9H).

Synthesis of 5-bromo-2-(4-trimethylsilylphenyl)pyridine 3
A 2 L 2-neck flask was charged with toluene (1.1 L) and water (0.2 L) the solvents were then degassed by a stream of Ar for 30 minutes. 2 (15.1 g, 80.0 mmol, 1.0 equiv.) and 2,5-dibromopyridine (18.9 g, 80.0 mmol, 1.0 equiv.) were added. To the resulting solution K₂CO₃ (46.0 g, 320 mmol, 4.0 equiv.) and Pd(PPh₃)₂ (4.61 g, 4.00 mmol, 0.05 equiv.) the solution was heated to 80°C and stirred for 3 days. After cooling to room temperature the phases were separated; the organic phase was washed with water (200 mL x 2) and then dried over MgSO₄. The solvent was removed in vacuo and the resulting yellow solid was purified by flash column chromatography (cyclohexane/ CH₂Cl₂ 2:1) followed by column chromatography (cyclohexane/ CH₂Cl₂ gradient: 1:0→3:1→1:1→1:2→0:1) to give 3 (20.2 g, 83%) as colorless powder. ¹H-NMR (300 MHz, CDCl₃) δ/ppm = 8.74 (d, 1H, J/Hz = 2.4), 7.97-7.92 (m, 3H), 7.86 (dd, IH, J/Hz = 8.5, 2.4), 7.66-7.60 (m, 2H), 0.31 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃) δ/ppm = 156.09, 150.89, 142.20, 139.40, 138.64, 134.01, 126.07, 121.77, 119.48, -1.03.

Synthesis of 5-iodo-2-(4-trimethylsilylphenyl)pyridine 4
3 (20.2 g, 66.0 mmol, 1.0 equiv.) was dissolved in Et₂O (300 mL) and cooled to -78°C (acetone, CO₂ (s)) then n-butyllithium (1.6 M in hexanes, 42 mL, 66.0 mmol, 1.0 equiv.) was added dropwise and the resulting solution was stirred for 2.5 h. Subsequently I₂ (20.1 g, 79.2 mmol, 1.2 equiv.) in Et₂O (125 mL) was added at -78°C and the solution was allowed to reach room temperature overnight. The solution was then poured into water (500 mL) and Na₂S₂O₅ (1.5 g) in water (200 mL) was added. The phases were separated and the organic phase was washed with water (200 mL). The aqueous phases were combined and the pH was adjusted to 8; followed by extraction with CH₂Cl₂ (100 mL x 3). The combined organic phases were dried over MgSO₄ and the solvent was removed under reduced pressure to afford 4 (23.3 g, quant.) as light beige powder that was used without further purification. ¹H-NMR (300 MHz, CDCl₃) δ/ppm = 8.89 (d, IH, J/Hz = 2.2), 8.04 (dd, IH, J/Hz = 8.4, 2.2)
7.97-7.92 (m, 2H), 7.86 (dd, IH, J/Hz = 8.5, 2.4), 7.66-7.60 (m, 2H), 7.54 (d, IH, J/Hz = 8.4), 0.30 (s, 9H).

Synthesis of 5-iodo-2-(4-iodophenyl)pyridine 5

4 (23.3 g, 66.0 mmol, 1.0 equiv.) was dissolved in CH₂Cl₂ (750 mL) and cooled to 0°C. ICl (14 mL, 280 mmol, 4.2 equiv.) in CH₂Cl₂ (250 mL) was added dropwise over 30 minutes. The solution was stirred for 19 h before the addition of NaOH (aq) (8 M, 660 mL) and N₂S₂O₅ (12 g, in 100 mL H₂O). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (300 mL x 3). The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure to give a brown powder. That was recrystallized from CH₂Cl₂ to give 5 (21.0 g, 80%) as shiny beige flakes. ¹H-NMR (200 MHz, CDCl₃) δ/ppm = 8.91 (d, IH, J/Hz = 2.2), 8.09 (dd, IH, J/Hz = 8.4, 2.2) 7.90-7.81 (m, 2H), 7.79-7.70 (m, 2H), 7.86 (dd, IH, J/Hz = 8.5, 2.4), 7.54 (dd, IH, J/Hz = 8.4, 0.7).

Synthesis of 5-triethoxysilyl-2-(4-triethoxysilylphenyl)pyridine bTS-ppy

A 2 L 2-neck round-bottom-flask under argon was charged with 5 (12.2 g 30.0 mmol, 1.0 equiv.), [Rh(cod)(NCMe)₂]BF₄ (0.584 g, 1.54 mmol, 0.05 equiv.) and tetrabutylammonium iodide (25.5 g, 68.9 mmol, 2.3 equiv.) and subsequently DMF (800 mL) was added. To the resulting solution NEt₃ (25 mL, 180 mmol, 6.0 equiv) and triethoxysilane (25 mL, 135 mmol, 4.5 equiv.) were added and the solution was heated to 80°C for 22 h. The solvent was then removed in vacuo and the resulting slurry was dispersed in Et₂O (800 mL) and filtered through a pad of celite and activated charcoal. Removal of the solvent and Kugelrohr distillation (250°C, 10⁻⁵ mbar) afforded 6 (7.4 g, 50%) as yellow liquid. ¹H-NMR (300 MHz, CD₂Cl₂) δ/ppm = 8.91 (s, IH, 6-Py), 8.0 (s, IH, 3-Ph), 7.87 (m, 2H, 4,5-Py), 7.71 (d, IH, 7.31 (d, IH, 5-Ph), 3.99-3.79 (m, 12H, SiOCH₂CH₃), 1.3-1.2 m, 18H, Si(OCH₂CH₃)); ¹³C-NMR (75 MHz, CD₂Cl₂) δ/ppm = 168.4 (2-Py), 163.8 (2-Ph), 157.7 (6-Py), 146.6 (1-Ph), 143.2 (4-Py), 142.9 (3-Ph), 133.9 (4-Ph), 128.4 (5-Ph), 126.4 (5-Py), 118.9 (3-Py), (Py-Si(OCH₂CH₃)), (Si(OCH₂CH₃)), (Si(OCH₂CH₃)); ¹⁵N-NMR (¹H-¹⁵N HMBC, CDCl₃) δ/ppm = 307; ²⁹Si-NMR (60 MHz, CDCl₃) -58.37, 59.23. HR-MS (MALDI/ESI) m/z = 480.2234 (calc. [M+H⁺] 480.2232)
Synthesis of Iridium(bTS-ppy)Cp*Cl IrCp*-bTS-ppy

A young-style NMR-tube was charged with [IrCp*Cl₂]₂ (16 mg, 0.02 mmol, 1.0 equiv.), 6 (16 µL, 0.04 mmol, 2.0 equiv.) and NaOAc (4.6 mg, 0.06 mmol, 2.8 equiv.) and CD₂Cl₂ (~0.5 mL) was added via vacuum transfer. The solution was stirred for 24h when the reaction was complete. ¹H-NMR (300 MHz, CD₂Cl₂) δ/ppm = 8.92 (s, 1H, 6-Py), 8.12 (s, 1H, 3-Ph), 7.87 (m, 2H, 4,5-Py), 7.71 (d, 1H, 6-Ph), 7.31 (d, 1H, 5-Ph), 3.99-3.79 (m, 12H, SiOCH₂CH₃)₃), 1.70 (s, 15H, C₅(CH₃)₅), 1.3-1.2 (m, 18H, Si(OCH₂CH₃)₃); ¹³C-NMR (75 MHz, CD₂Cl₂) δ/ppm = 168.4 (2-Py), 163.8 (2-Ph), 157.7 (6-Py), 146.6 (1-Ph), 143.2 (4-Py), 142.9 (3-Ph), 133.9 (4-Ph), 128.4 (5-Ph), 126.4 (5-Py), 123.5 (6-Ph), 118.9 (3-Py), 89.1 (C₅(CH₃)₅), 59.5 (Py-Si(OCH₂CH₃)₃), 59.1 (Ph-Si(OCH₂CH₃)₃), 18.5 (Si(OCH₂CH₃)₃), 9.0 (C₅(CH₃)₅); ¹⁵N-NMR (¹H-¹⁵N HMBC, CD₂Cl₂) δ/ppm = 225. HR-MS (MALDI/ESI) m/z = 841.2572 (calc. [M⁺] 841.2559)
c) Spectra

\[^1H-NMR \quad \text{bTS-ppy} \]

\[^{13}C-NMR \quad \text{bTS-ppy} \]
References