Electronic Supplementary Information

A Physicochemical Examination of the Free Radical Scavenging Activity of Trolox: Mechanism, Kinetics and Influence of the Environment

Dr. Marta E. Alberto,¹ Prof. Nino Russo,¹ Prof. Andre Grand,² Prof. Annia Galano^{3*}

¹Dipartimento di Chimica - University of Calabria, Arcavacata di Rende, (CS), 87036, Italy.

²INAC/SCIB UMR E-3 CEA/UJF; CEA-Grenoble 1è Rue des Martyrs, 38054 Grenoble Cedex 9, France.

³Departamento de Química. Universidad Autónoma Metropolitana-Iztapalapa. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa. C. P. 09340. México D. F. México.

Contents

Table 1S. Gibbs free energies of reaction (ΔG , kcal/mol), at 298.15 K
Table 2S. Gibbs free energies of reaction (ΔG, kcal/mol), at 298.15 K, for neutral trolox in aqueous solution
Table 3S. Gibbs free energies of SET reactions (ΔG , kcal/mol), at 298.15 K, for the neutral (H ₂ Tx), mono-anionic (HTx ⁻), and di-anionic (Tx ²⁻) forms of trolox in aqueous solution; aqueous vertical electron affinities (^{Aq} VEA, eV) and aqueous adiabatic electron affinities (^{Aq} AEA, eV) of the free radicals.
Table 4S. Gibbs free energies of activation (ΔG^{\neq} , kcal/mol), at 298.15 K for neutral trolox in aqueous solution
Table 5S. Gibbs free energies of activation (ΔG^{\neq} , kcal/mol), at 298.15 K, for the SET reactions of neutral (H ₂ Tx), mono-anionic (HTx ⁻), and di-anionic (Tx ²⁻) forms of trolox in aqueous solution
Table 6S. Reorganization energies (λ , kcal/mol) and difference (- λ)- Δ G for the SET reactions of neutral (H ₂ Tx), mono-anionic (HTx ⁻), and di-anionic (Tx ²⁻) forms of trolox in aqueous solution
Table 7S. Rate constants at 298.15 K, in M ⁻¹ s ⁻¹ , for neutral trolox in aqueous solution
Table 8S. Rate constants at 298.15 K, in $M^{-1}s^{-1}$, for the SET reactions of neutral (H_2Tx), mono- anionic (HTx^{-}), and di-anionic (Tx^{2-}) forms of trolox in aqueous solution
Table 9S. Branching ratios (Γ, %)*, at 298.15 K, for neutral trolox in aqueous solution

^{*} To whom correspondence should be addressed. E-mail: <u>agal@xanum.uam.mx</u>

Figure 1S. Linear correlation between the Gibbs energies of the SET reactions (Δ G, kcal/mol) and
the aqueous electron affinities, in eV, of the free radicals. (A)≡adiabatic (^{Aq} AEA), B≡vertical
(^{Aq} VEA)
Figure 2S. Fully optimized transition states for the HT reactions between trolox and 'OH in pentyl ethanoate solution. Distances are reported in Å
Figure 3S. Fully optimized transition states for the RAF reactions between trolox and [•] OH in pentyl ethanoate solution. Distances are reported in Å
Figure 4S. Fully optimized transition states for the HT reactions between neutral trolox and [•] OH in aqueous solution. Distances are reported in Å
Figure 5S. Fully optimized transition states for the RAF reactions between neutral trolox and 'OH in aqueous solution. Distances are reported in Å
Figure 6S. Fully optimized transition states for the HT reactions between anionic trolox and [•] OH in aqueous solution. Distances are reported in Å
Figure 7S. Fully optimized transition states for the RAF reactions between anionic trolox and [•] OH in aqueous solution. Distances are reported in Å
Figure 8S. Fully optimized transition states for the reactions between trolox and $^{\circ}OCH_{3}$ in pentyl ethanoate solution. Distances are reported in Å
Figure 9S. Fully optimized transition states for the reactions between neutral trolox and $^{\circ}OCH_3$ in aqueous solution. Distances are reported in Å
Figure 10S. Fully optimized transition states for the HT reactions between anionic trolox and $^{\circ}OCH_3$ in aqueous solution. Distances are reported in Å
Figure 11S. Fully optimized transition states for the RAF reactions between anionic trolox and $^{\circ}OCH_3$ in aqueous solution. Distances are reported in Å
Figure 12S. Fully optimized transition states for the reactions of trolox with 'OOH (R2) and 'OOCHCH ₂ (R4) in pentyl ethanoate solution. Distances are reported in Å
Figure 13S. Fully optimized transition states for the reactions of neutral trolox with [•] OOH (R2) and [•] OOCHCH ₂ (R4) in aqueous solution. Distances are reported in Å
Figure 14S. Fully optimized transition states for the reactions of anionic trolox with [•] OOH (R2) and [•] OOCHCH ₂ (R4) in aqueous solution. Distances are reported in Å

path	R1 (I)	R1 (II)	R2 (I)	R2 (II)	R3 (I)	R3 (II)	R4 (I)	R4 (II)
SET	43.24	-7.44	64.38	16.13	56.35	10.65	54.18	11.41
HT-1a	-39.60	-43.51	-5.70	-10.40	-22.52	-26.97	-4.75	-10.22
HT-2a	-28.70	-32.28	5.19	0.83	-11.63	-15.74	6.14	1.01
HT-3a	-29.36	-31.41	4.53	1.69	-12.28	-14.88	5.49	1.88
HT-6a	-29.79	-30.89	4.10	2.21	-12.71	-14.35	5.06	2.40
HT-7	-32.22	-30.89	1.67	2.21	-15.14	-14.35	2.63	2.40
HT-8	-20.28	-22.48	13.61	10.63	-3.20	-5.94	14.57	10.82
HT-9a	-16.82	-19.54	17.07	13.57	0.26	-3.00	18.03	13.75
RAF-1	-17.06	-17.57	14.04	10.75	1.00	-5.06	16.00	11.90
RAF-2	-12.61	-13.34	17.03	15.26	6.16	-0.65	15.35	14.98
RAF-3	-13.44	-14.57	13.33	12.40	-0.47	-3.47	13.74	13.69
RAF-4	-14.34	-12.82	14.80	13.98	3.89	0.30	16.38	13.16
RAF-5	-10.22	-9.36	18.24	15.32	6.14	3.37	16.29	15.82
RAF-6	-15.00	-15.67	16.21	11.05	2.43	-2.26	16.86	11.71

Table 1S. Gibbs free energies of reaction (Δ G, kcal/mol), at 298.15 K.

(I) pentyl ethanoate solution, (II) aqueous solution R1 \equiv OH, R2 \equiv OOH, R3 \equiv OCH₃, R4 \equiv OOCH \equiv CH₂

R1	R2	R3	R4
-3.06	20.47	14.99	15.75
-42.05	-8.57	-25.14	-8.39
-31.62	1.85	-14.72	2.04
-31.88	1.59	-14.97	1.78
-31.28	2.20	-14.37	2.39
-34.51	-1.03	-17.60	-0.85
-21.36	12.11	-4.45	12.30
-18.89	14.58	-1.98	14.77
-17.93	11.89	-0.47	12.09
-13.90	15.37	2.90	11.58
-15.13	10.42	-2.59	11.95
-15.17	14.00	2.70	13.59
-11.86	15.72	5.50	13.32
-15.46	14.33	2.72	15.17
	-3.06 -42.05 -31.62 -31.88 -31.28 -34.51 -21.36 -18.89 -17.93 -13.90 -15.13 -15.17 -11.86	$\begin{array}{ccccc} -3.06 & 20.47 \\ -42.05 & -8.57 \\ -31.62 & 1.85 \\ -31.88 & 1.59 \\ -31.28 & 2.20 \\ -34.51 & -1.03 \\ -21.36 & 12.11 \\ -18.89 & 14.58 \\ -17.93 & 11.89 \\ -13.90 & 15.37 \\ -15.13 & 10.42 \\ -15.17 & 14.00 \\ -11.86 & 15.72 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 2S. Gibbs free energies of reaction (Δ G, kcal/mol), at 298.15 K, for neutral trolox in aqueous solution.

 $R1 \equiv OH, R2 \equiv OOH, R3 \equiv OCH_3, R4 \equiv OOCH \equiv CH_2$

Table 3S. Gibbs free energies of SET reactions (ΔG , kcal/mol), at 298.15 K, for the neutral (H₂Tx), mono-anionic (HTx⁻), and di-anionic (Tx²⁻) forms of trolox in aqueous solution; aqueous vertical electron affinities (^{Aq}VEA, eV) and aqueous adiabatic electron affinities (^{Aq}AEA, eV) of the free radicals.

	H_2Tx	HTx⁻	Tx ²⁻	^{Aq} VEA	AqAEA
ЮН	-3.10	-7.44	-34.37	5.55	5.53
•OCH ₃	12.03	7.69	-19.25	4.81	4.87
•OCCl ₃	-42.84	-47.18	-74.11	6.49	7.25
'OCH ₂ CHCH ₂	10.66	6.32	-20.62	4.88	4.93
'OOH	18.29	13.95	-12.98	4.14	4.60
'OOCH ₃	20.22	15.88	-11.05	4.04	4.51
'OOCH ₂ Cl	12.25	7.91	-19.03	4.34	4.86
'OOCHCl ₂	3.41	-0.93	-27.86	4.71	5.24
'OOCCl ₃	-2.26	-6.60	-33.54	4.95	5.49
'OOCHCH ₂	15.75	11.41	-15.53	4.22	4.71
'OOCH ₂ CHCH ₂	19.42	15.08	-11.85	4.05	4.55
ArO•	15.94	11.60	-15.33	4.59	4.70
DPPH [•]	12.35	8.01	-18.93	4.85	4.86
Br ₂ •	4.98	0.64	-26.30	4.98	5.17
SO_4	-28.40	-32.74	-59.67	6.06	6.62
NO ₂ •	-2.72	-7.06	-33.99	4.45	5.51
N ₃ •	-1.01	-5.35	-32.29	5.51	5.43
$2\mathrm{dG}^{\bullet+(a)}$	-10.32	-14.66	-41.59	5.53	5.84

path	R1	R2	R3	R4
SET	0.64			
HT-1a	~0.00	12.62	~0.00	8.49
HT-2a	6.59		14.40	
HT-3a	5.56		12.09	
НТ-ба	6.83		13.00	
HT-7	5.01	20.10	12.99	19.15
HT-8	7.23		16.37	
HT-9a	9.05		18.10	
RAF-1	1.70		9.39	
RAF-2	3.04			
RAF-3	3.30		12.15	
RAF-4	1.60			
RAF-5	3.61			
RAF-6	3.44			

Table 4S. Gibbs free energies of activation (ΔG^{\neq} , kcal/mol), at 298.15 K for neutral trolox in aqueous solution.

Table 5S. Gibbs free energies of activation (ΔG^{\neq} , kcal/mol), at 298.15 K, for the SET reactions of neutral (H₂Tx), mono-anionic (HTx⁻), and di-anionic (Tx²⁻) forms of trolox in aqueous solution.

	H ₂ Tx	HTx	Tx ²⁻
ЮН	0.63	0.02	30.23
•OCH ₃	12.22	7.72	3.55
'OCCl ₃	2.96	5.05	25.14
[•] OCH ₂ CHCH ₂	10.72	6.46	4.74
'OOH	18.30	14.17	0.30
'OOCH ₃	20.24	15.96	0.66
'OOCH ₂ Cl	12.99	9.58	~0.00
'OOCHCl ₂	6.90	4.43	0.97
'OOCCl ₃	4.04	2.19	2.55
'OOCHCH ₂	15.91	12.10	0.10
'OOCH ₂ CHCH ₂	19.42	15.27	0.60
ArO	16.64	11.68	0.89
DPPH [•]	12.91	8.02	4.92
Br ₂ •-	6.10	3.27	4.80
SO ₄ •	0.65	1.89	19.63
NO ₂ •	6.79	4.79	0.05
N ₃ •	1.07	~0.00	35.93
$2dG^{\bullet+(a)}$	0.37	~0.00	13.58
(a) 2 ; decomposition of	in a madia al ac	tion	

Table 6S. Reorganization energies (λ , kcal/mol) and difference (- λ)- Δ G for the SET reactions of neutral (H₂Tx), mono-anionic (HTx⁻), and di-anionic (Tx²⁻) forms of trolox in aqueous solution.

		λ		$(-\lambda)-\Delta G$		
	H_2Tx	HTx⁻	Tx ²⁻	H_2Tx	HTx ⁻	Tx ²⁻
ЮН	7.45	6.76	6.45	-4.35	0.68	27.92
•OCH ₃	9.35	8.67	8.36	-21.38	-16.36	10.89
•OCCl ₃	25.48	24.80	24.49	17.36	22.38	49.63
OCH ₂ CHCH ₂	9.17	8.48	8.17	-19.83	-14.80	12.45
юон	18.61	17.93	17.61	-36.90	-31.88	-4.63
'OOCH ₃	18.91	18.23	17.91	-39.13	-34.11	-6.86
'OOCH ₂ Cl	19.93	19.25	18.94	-32.18	-27.16	0.09
'OOCHCl ₂	20.22	19.54	19.22	-23.63	-18.61	8.64
'OOCCl ₃	20.44	19.76	19.44	-18.18	-13.15	14.09
'OOCHCH ₂	19.23	18.55	18.24	-34.98	-29.96	-2.71
'OOCH ₂ CHCH ₂	19.53	18.85	18.53	-38.95	-33.93	-6.68
ArO [•]	10.51	9.82	9.51	-26.45	-21.42	5.82
DPPH [•]	8.10	7.42	7.10	-20.45	-15.42	11.82
Br_2^{\bullet}	12.46	11.78	11.47	-17.44	-12.42	14.83
SO_4^{\bullet}	21.02	20.34	20.02	7.38	12.40	39.65
NO ₂ •	32.38	31.69	31.38	-29.66	-24.64	2.61
N ₃ •	6.13	5.44	5.13	-5.12	-0.09	27.16
$2\mathrm{dG}^{\bullet+(a)}$	15.01	14.32	14.01	-4.69	0.33	27.58

path	R1	R2	R3	R4
SET	8.14E+09			
HT-1a	1.91E+09	3.45E+03	1.72E+09	3.70E+06
HT-2a	2.39E+08		4.47E+03	
HT-3a	8.57E+08		1.29E+05	
НТ-ба	1.67E+08		3.29E+04	
HT-7	1.11E+09	2.28E-02	1.64E+04	1.14E-01
HT-8	5.98E+07		9.67E+01	
HT-9a	4.31E+06		1.65E+01	
RAF-1	1.90E+09		1.61E+06	
RAF-2	1.86E+09			
RAF-3	1.84E+09		1.54E+04	
RAF-4	1.90E+09			
RAF-5	1.79E+09			
RAF-6	1.82E+09			
Overall	2.36E+10	3.45E+03	1.29E+09	3.70E+06

Table 7S. Rate constants at 298.15 K, in M⁻¹s⁻¹, for neutral trolox in aqueous solution.

	H_2Tx	HTx⁻	Tx ²⁻
•ОН	8.14E+09	8.16E+09	4.32E-10
•OCH ₃	6.85E+03	1.37E+07	5.21E+09
•OCCl ₃	6.42E+09	1.06E+09	2.30E-06
•OCH ₂ CHCH ₂	8.61E+04	1.13E+08	1.63E+09
•ООН	2.40E-01	2.52E+02	7.94E+09
•OOCH ₃	8.98E-03	1.25E+01	7.70E+09
•OOCH ₂ Cl	1.87E+03	5.91E+05	7.63E+09
•OOCHCl ₂	5.35E+07	2.40E+09	7.53E+09
'OOCCl ₃	3.57E+09	7.19E+09	6.91E+09
•OOCHCH ₂	1.36E+01	8.42E+03	7.65E+09
OOCH ₂ CHCH ₂	3.60E-02	3.98E+01	7.55E+09
ArO [•]	3.91E+00	1.70E+04	7.48E+09
DPPH [•]	2.15E+03	8.18E+06	1.27E+09
Br ₂ •-	2.04E+08	5.85E+09	1.52E+09
SO_4	7.62E+09	7.43E+09	2.54E-02
NO ₂ •	6.45E+07	1.54E+09	7.87E+09
N ₃ •	7.81E+09	7.86E+09	2.83E-14
$2\mathrm{dG}^{\bullet+(a)}$	7.39E+09	7.40E+09	6.93E+02

Table 8S. Rate constants at 298.15 K, in M⁻¹s⁻¹, for the SET reactions of neutral (H₂Tx), mono-anionic (HTx⁻), and di-anionic (Tx²⁻) forms of trolox in aqueous solution.

path	R1	R2	R3	R4
SET	34.50			
HT-1a	8.09	~100.00	99.89	~100.00
HT-2a	1.01		~0.00	
HT-3a	3.63		0.01	
НТ-ба	0.71		~0.00	
HT-7	4.69	~0.00	~0.00	~0.00
HT-8	0.25		~0.00	
HT-9a	0.02		~0.00	
RAF-1	8.07		0.09	
RAF-2	7.89			
RAF-3	7.78		~0.00	
RAF-4	8.07			
RAF-5	7.57			
RAF-6	7.70			

Table 9S. Branching ratios (Γ , %)*, at 298.15 K, for neutral trolox in aqueous solution.

R1 = 'OH, R2 = 'OOH, R3 = 'OCH₃, R4 = 'OOCH=CH₂ calculated as $\Gamma_i = (k_i/k_{overall}) \times 100$

Figure 1S. Linear correlation between the Gibbs energies of the SET reactions (ΔG , kcal/mol) and the aqueous electron affinities, in eV, of the free radicals. (A)=adiabatic (^{Aq}AEA), B=vertical (^{Aq}VEA).

Figure 2S. Fully optimized transition states for the HT reactions between trolox and •OH in pentyl ethanoate solution. Distances are reported in Å.

Figure 3S. Fully optimized transition states for the RAF reactions between trolox and •OH in pentyl ethanoate solution. Distances are reported in Å.

Figure 4S. Fully optimized transition states for the HT reactions between neutral trolox and **•**OH in aqueous solution. Distances are reported in Å.

Figure 5S. Fully optimized transition states for the RAF reactions between neutral trolox and **•**OH in aqueous solution. Distances are reported in Å.

Figure 6S. Fully optimized transition states for the HT reactions between anionic trolox and **•**OH in aqueous solution. Distances are reported in Å.

Figure 7S. Fully optimized transition states for the RAF reactions between anionic trolox and •OH in aqueous solution. Distances are reported in Å.

Figure 8S. Fully optimized transition states for the reactions between trolox and \cdot OCH₃ in pentyl ethanoate solution. Distances are reported in Å.

Figure 9S. Fully optimized transition states for the reactions between neutral trolox and \cdot OCH₃ in aqueous solution. Distances are reported in Å.

Figure 10S. Fully optimized transition states for the HT reactions between anionic trolox and \cdot OCH₃ in aqueous solution. Distances are reported in Å.

Figure 11S. Fully optimized transition states for the RAF reactions between anionic trolox and •OCH₃ in aqueous solution. Distances are reported in Å.

Figure 12S. Fully optimized transition states for the reactions of trolox with •OOH (R2) and •OOCHCH₂ (R4) in pentyl ethanoate solution. Distances are reported in Å.

Figure 13S. Fully optimized transition states for the reactions of neutral trolox with •OOH (R2) and •OOCHCH₂ (R4) in aqueous solution. Distances are reported in Å.

Figure 14S. Fully optimized transition states for the reactions of anionic trolox with •OOH (R2) and •OOCHCH₂ (R4) in aqueous solution. Distances are reported in Å.