Fig. S1 Current density $j_{ox}$ for HCOOH oxidation at some selected potentials from 0.44 V to 0.6 V recorded during the positive-going potential scan with a scan rate of 50 mV/s as a function of (a) $\theta_{formate}$, (b) $\theta_{formate}(1 - 2\theta_{formate})$, (c) $\theta_{formate}^2$, and (d) $c_{HCOOH}'(1 - 2\theta_{formate})$. Note the data point with $c_{HCOOH}=10$ mM given in Fig. 7d is from ref. 1.¹

From the figure it is clearly seen that there is no simple linear relationship between the measured faradaic current density with $j(\theta)$ based on the first and second order formate pathway mechanism proposed previously by ref.1 and 2,3.¹³
References