Engineering electrodeposited ZnO films and their memristive switching performance

Ahmad Sabirin Zoolfakaraaf, Rosmalini Abdul Kadiraf, Rozina Abdul Rania, Sivacarendran Balendhrana, Xinjun Liub, Eugene katsd, Suresh Bhargavac, Madhu Bhaskaranac, Sharath Sriramac, Serge Zhuiykovd, Anthony P. O’Mullanee and Kouros Kalantar-zadeha

aSchool of Electrical and Computer Engineering, RMIT University, Melbourne, VIC 3001, Australia

bSchool of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500–712, Korea

cFunctional Materials and Microsystems Research Group, RMIT University, Melbourne, VIC 3001, Australia

dMaterials Science and Engineering Division, CSIRO, Highett, VIC, Australia

eSchool of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia

fFaculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia

\textit{E-mail: ahdsabin@yahoo.com and kourosh.kalantar@rmit.edu.au}
Reproducibility of the Zn and O composition as a function of film processing

In order to verify the reproducibility of the Zn and O composition as a function of film processing, we fabricated five different samples for each type of ZnO films (SL, ECD 1000s, ECD 3000s, SL & ECD 500s, SL & ECD 1000s). Figure S1 shows the average of Zn and O elemental composition. The tests were performed on five times.

![Graph showing average Zn and O composition](image)

Fig. S1 Average of Zn and O elemental compositions for six different types of ZnO (standard ZnO target and films). The tests were performed on five similarly fabricated samples. The standard deviation was < 10%.