Supporting Information

Porous Li$_2$FeSiO$_4$/Carbon Monoliths with Controlled Macropores: Effects of Pore Properties on Electrode Performance as Cathode of Lithium Ion Batteries

By George Hasegawa,* Mai Sannohe, Yuya Ishihara, Kazuyoshi Kanamori, Kazuki Nakanishi, and Takeshi Abe

Figure S1 TG-DTA curves of (a) Fe(NO$_3$)$_3$·9H$_2$O and (b) Poly(vinylpyrrolidone) (PVP, $M_w =$ 55,000) under air atmosphere.
Figure S2 SEM images of the monolithic Li$_2$FeSiO$_4$/carbon composites calcined at different temperatures; (a) H4-P8, (b) H4-P8-600, (c) H4-P8-700, and (d) H4-P8-800.
Figure S3 Nitrogen adsorption-desorption isotherms of the Li$_2$FeSiO$_4$/carbon composites and those of the samples after the removal of carbon by the calcination at 600 °C for 2 h under air atmosphere.
Figure S4 The XRD pattern of the sample calcined at 700 °C under N₂ atmosphere (H4-P8-700) followed by heat treatment at 800 °C under air atmosphere.
Figure S5 Charge and discharge curves of the electrode prepared from H4-P8-700 at 10 mA g⁻¹.
Figure S6 Discharge capacities of the samples calcined at 700 °C from different precursor gels at different currents.