SUPPORTING INFORMATION

Fullerene C₇₀ Characterization by ¹³C NMR and the Importance of the Solvent and Dynamics in Spectral Simulations[†]

Jakub Kaminský, Miloš Buděšínský, Stefan Taubert, Petr Bouř, and Michal Straka

Fullerene parameters

bond stretching	C C 6.56 1.4200
bond stretching (5-ring)	C C 6.56 1.4540
angle bending	C C C 0.45 120.80 108.00 0.00
angle bending (5-ring)	C C C 0.45 108.00 108.00 0.00
torsional	C C C C -0.67 0.0 1 10.30 138.0 2 0.00 0.0 3
torsional (5-ring)	C C C C -0.67 0.0 1 10.30 142.0 2 0.00 0.0 3

Definition and notation is identical to the MM3-200 (N. L. Allinger, Y. H. Yuh and J.-H. Lii, "Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1", J. Am. Chem. Soc., 111, 8551-8566 (**1989**)) force field, available in the Tinker program. Other parameters correspond to benzene carbon atoms.

Table S1 Basis set convergence of 13 C chemical shifts (in ppm) for C₇₀.

atom	pcS-0	pcS-1	pcS-2
Ca	152.8	153.9	154.3
C_b	149.5	150.6	151.2
C_{c}	148.6	149.3	149.6
C_d	147.4	147.6	148.0
Ce	132.6	130.5	130.5

Chemical shifts were calculated for BP86/def-TZVP optimized geometry. The BP86 Functional for

¹³C Chemical Shifts was used.

Table S2 Performance of DFT functionals for ¹³C chemical shifts (in ppm) in C₇₀. RMSD is the root-mean-square deviation from the experiment calculated for relative NMR peak positions (C-C_e). The BP86/def-TZVP optimized geometry and IGLO-III basis set were used. Experimental values were from ref. 15.

Functional	RMSD
BHandHLYP	0.3
BHandH	0.4
CAMB3LYP	0.5
B1LYP	0.8
wB97xd	0.8
M06L	0.8
X3LYP	0.9
B98	0.9
B3LYP	0.9
O3LYP	1.0
M06HF	1.1
HCTH	1.3
OLYP	1.3
BP86	1.6
BLYP	1.6
PBEPBE	1.7
SV5LYP	2.3

Table S3 Motion of the C70 carbon atoms. Average distance from the centre of mass r (in pm) and

average atom fluctuation Δr from that position (in pm) as obtained from MM3 MD simulation.

Method		Ca	C _b	Cc	C_d	Ce
MD	r	421	407	392	368	360
	Δr	7	7	7	7	7
FPMD	r	418	405	391	370	359
	Δr	5	5	5	6	5
FPMD/CPCM	r	418	405	391	370	359
	Δr	3	3	3	3	3

Table S4 Temperature dependence of C_{70} ¹³C NMR shifts (ppm). The force field was calculated at the HF/6-31G level, while the expansion of the NMR property was made at the HF/IGLO-II and BP86/IGLO-II levels.

		Ca	C _b	Cc	C_d	Ce
HF/IGLO-II//	Δ_{273}	-8.4	-8.7	-8.5	-9.2	-10.7
HF/6-31G	Δ_{373}	-9.1	-9.4	-9.3	-10.0	-11.6
	$\Delta \Delta$	-0.7	-0.7	-0.8	-0.8	-0.9
BP86/IGLO-II//	Δ_{273}	-7.3	-7.2	-7.3	-7.9	-9.2
HF/6-31G	Δ_{373}	-7.9	-7.7	-8.0	-8.6	-10.0
	$\Delta\!\Delta$	-0.6	-0.5	-0.7	-0.7	-0.8

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is $\ensuremath{\mathbb{C}}$ The Owner Societies 2013

Physical Chemistry Chemical Physics

Fig. S1 The effect of increasing the basis set on calculated ¹³C nuclear shieldings of C_{60} . Jensen's pcS-n (n = 0, 1, 2 and 3; full circles) and IGLO-n (n = II, III and IV; empty circles) basis sets were used. Shieldings were calculated for BP86/def-TZVP optimized geometry. The BP86 functional was used.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is $\ensuremath{\mathbb{C}}$ The Owner Societies 2013

Physical Chemistry Chemical Physics

Fig. S2 Temperature effect on experimental NMR signals in C_{70} . Plot shows experimental chemical shifts (related to C_e) measured for six different temperatures.