Supplementary Information for

The influence of thermal degradation on the electrodeposition of aluminium from an air- and water-stable ionic liquid

Jean-Pierre M. Veder,* Michael D. Horne,a Thomas Rüther,b Alan M. Bond,c Theo Rodopoulosa

aCSIRO Process Science and Engineering, Box 312, Clayton South, Victoria 3169, Australia
bCSIRO Energy Technology, Box 312, Clayton South, Victoria 3169, Australia
cMonash University, School of Chemistry, Clayton, Victoria 3800, Australia
*Ph: +613 9545 8508, fax: +613 9562 8919, e-mail: Jean-Pierre.Veder@csiro.au

Materials and equipment description

The 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, or [C₄mpyr][NTf₂] (Ultra Pure, Merck), and AlCl₃ (99.99%, Fluka) were stored and used in an argon-filled glovebox with the H₂O and O₂ content maintained below 5 ppm. The water content of the IL determined by coulometric Karl-Fisher titration (Metrohm 756 KF Coulometer) was determined to be < 40 ppm H₂O, whilst ICP-MS analyses of the IL and AlCl₃ revealed no significant inorganic impurities.

Voltammetric measurements were performed in a jacketed electrochemical cell maintained at 80 °C using potential scan rates of 10 mVs⁻¹. A 1 mm diameter boron-doped diamond (BDD) disk working electrode and a 3 mm diameter glassy carbon rod counter electrode were used in a conventional 3-electrode setup along with a pseudo-reference electrode comprising a silver wire placed inside a glass luggin capillary. [C₄mpyr][NTf₂] containing high chloride concentrations from AlCl₃ provides a stable reference potential 0.76 V positive of the reversible potential for the ferrocene/ferricenium redox couple. BDD was chosen as the working electrode due to the favourable surface properties which are well suited for studying Al deposition¹. Further details on BDD electrode construction is described elsewhere². A Radiometer-Analytical Voltalab 40 PGZ301 potentiostat controlled by Voltamaster 4 software was used to perform electrochemical measurements.

Al deposits that were subsequently analysed using field-emission gun environmental scanning electron microscopy (FEG-ESEM) were obtained by electrodeposition onto 0.7 mm diameter gold wire electrodes with an exposed length of 5 mm. The deposits
were obtained using a fixed potential of -2.3 V, coinciding with the foot of the reduction peak, until 2.25C of charge was passed. Prior to FEG-SEM analysis, the deposits were thoroughly rinsed in isopropanol and warm deionised water to remove residual IL and AlCl₃. FEG-ESEM images were recorded at 10 kV (FEI-Quanta 400F).

The 27Al NMR spectra were recorded using a Bruker Av500 spectrometer operating at 130.3 MHz. The 27Al chemical shift values are reported relative to an aqueous solution of Al(NO₃)₃·9H₂O as an external reference. 13C NMR spectra were recorded using a Bruker Av400 spectrometer operating at 100.6 MHz.

References