Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a secondary full-Heusler phase: Microwave preparation and Spark Plasma Sintering of TiNi\textsubscript{1+x}Sn

Christina S. Birkel,ab Jason E. Douglas,bc Bethany R. Lettiere,b Gareth Seward,d Nisha Verma,c Yichi Zhang,a Tresa M. Pollock,bc Ram Seshadri,abc and Galen D. Stucky*aac

Analytical conditions of microprobe analysis
Ti K\textsubscript{\alpha}, Ni K\textsubscript{\alpha}, and Sn L\textsubscript{\alpha} X-ray intensities were measured using LPET, LLIF, and LPET analyzing crystals. X-ray intensity maps were collected using 15 keV accelerating voltage with 100 nA of beam current. An area of 125\times 125 \mu m was traversed using continuous stage translation to create a 256\times 256 pixel map with a dwell time of 125 ms per pixel. Quantitative analysis was conducted at 15 keV accelerating voltage and 10 nA beam current. Ti K\textsubscript{\alpha}, Ni K\textsubscript{\alpha}, and Sn L\textsubscript{\alpha} intensities were measured on-peak for 20 seconds and 10 seconds off-peak either side of the peak to create a linear background interpolation.

Figure S1. SEM images of as-prepared TiNiSn, TiNi\textsubscript{1.06}Sn, and TiNi\textsubscript{1.15}Sn

aFax: 805-893-4120; Tel: 805-893-4872; E-mail: stucky@chem.ucsb.edu
b Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510 USA
c Materials Department, University of California, Santa Barbara, California 93106-5050 USA
d Department of Earth Sciences, University of California, Santa Barbara, California 93106-9630 USA
Figure S2. Microprobe images of TiNi$_{1+x}$Sn with $x = 0$, 0.04, 0.1, and 0.15.