Highly stable of polymer solar cells employing highly conductive MoO$_3$ hole-transport layer

Naveen Kumar Elumalai, a,b Amitaksha Saha, d Chellappan Vijila,*,b Rajan Jose,*,c Zhang Jie, b and Seeram Ramakrishna a

a National University of Singapore, Singapore 117576; b Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602; c Universiti Malaysia Pahang, Kuantan, 26300 Pahang, Malaysia; d Nanyang Technological University, Singapore, 639815

*Correspondence: e-vijila@imre.a-star.edu.sg (CV) and rjose@ump.edu.my (RJ)

Supporting Information

S1

Scaling exponent (α) calculated using power-law for both devices.
Voc1 – Voc determined by E_g difference in donor and acceptor
Voc2 – Voc determined by workfunction difference between the electrodes
In both the vacuum and nitrogen annealed devices, the series resistance increases with decrease in temperature. The trends of the I-V curve beyond the Voc from the figure 2a and figure 2b shows that the series resistance do not vary similarly with respect to temperature for both devices. The change in series resistance with respect to temperature is a combination of bulk and contact resistance. In this case, both the devices have similar architecture except for the annealing conditions; therefore the bulk resistance should not differ much between the devices.

The pronounced increase in series resistance in the case of device N can be attributed to higher contact resistance at the P3HT/MoO$_3$ interface as well as decreased charge transport pathways existing within the MoO$_3$ interlayer. The band bending existing at the interface, which favours the hole extraction, decreases with decrease in temperature. Moreover reduction in temperature also reduces the diffusion co-efficient leading to reduction in the
band bending. This eventually changes the diffusion current at the interface. [1] These factors results in increased surface charge recombination leading to lowering of fill factor.

Moreover the oxygen vacancies are comparatively lesser in the case of device N, which denotes that the MoO$_3$ interlayer in this device is more stoichiometric while compared with device V. [2] Hence when the temperature is lower the thermal energy applied to the electrons is also lowered thereby their transport is purely dependent across the already existing pathways within the MoO$_3$ buffer layer. In stoichiometric MoO$_3$ the defect states are lesser; it means the resistance for charge transport is higher as there are fewer pathways for the charge transport to occur. The device V annealed in vacuum conditions has more charge transport pathways (defect states) compared to device N. Hence when the temperature is lowered the series resistance is significantly lower than that of the device V.
