Supporting Information

QM/MM investigation on 1,3-dipolar cycloadditions of phthalazinium dicyanomethanide with three different dipolarophiles on water and in solutions

Xin Yang, Ying Xue*

College of Chemistry,
Key Lab of Green Chemistry and Technology in Ministry of Education,
Sichuan University, Chengdu 610064,
People’s Republic of China
Table S1. Computed and experimental densities of water-acetonitrile mixture solvents at 25 °C (g.cm⁻³).

Figure S1. Illustration of the 0.619-mixture solvent box.

Figure S2. Illustration of the 0.9-mixture solvent box.

Figure S3. (A) Side and (B) overhead illustration of “on water” 1,3-dipolar cycloadditions with MVK transition structure from the QM/MM/MC calculations.

Figure S4. (A) Side and (B) overhead illustration of “on water” 1,3-dipolar cycloadditions with MAC transition structure from the QM/MM/MC calculations.

Figure S5. (A) Side and (B) overhead illustration of “on water” 1,3-dipolar cycloadditions with MVK transition structure from the QM/MM/MC calculations.

Figure S6. Solute-solvent energy pair distribution for the transition structure (solid) and reactant (solid) of the 1,3-dipolar cycloadditions of 1,3-dipolar 1 and MAC at CH₃CN, in water, and on water. The ordinate records the number of solvent molecules that interact with the solutes with their interaction energy on the abscissa. Units for the ordinate are number of molecules per kcal/mol.

Figure S7. Solute-solvent energy pair distribution for the transition structure (solid) and reactant (solid) of the 1,3-dipolar cycloadditions of 1,3-dipolar 1 and STY at CH₃CN, in water, and on water. The ordinate records the number of solvent molecules that interact with the solutes with their interaction energy on the abscissa. Units for the ordinate are number of molecules per kcal/mol.

Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MVK optimizations in PCM.

Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MAC optimizations in PCM.

Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and STY optimizations in PCM.

Gas-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MVK optimizations.

Gas-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MAC optimizations.

Gas-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and STY optimizations.
Table S1. Computed and experimental densities of water-acetonitrile mixture solvents at 25 °C (g.cm\(^{-3}\))

<table>
<thead>
<tr>
<th>(X_{\text{H}_2\text{O}})</th>
<th>(\rho) (calcd)</th>
<th>(\rho) (exptl)</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.619</td>
<td>0.8506</td>
<td>0.8707 (^a)</td>
<td>1</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9617</td>
<td>0.9847 (^b)</td>
<td>2</td>
</tr>
</tbody>
</table>

\(^a\) Based on values at 20 °C, \(X_{\text{H}_2\text{O}}=0.957\)

References:

Figure S1. Illustration of the 0.619-mixture solvent box
Figure S2. Illustration of the 0.9-mixture solvent box
Figure S3. (A) Side and (B) overhead illustration of “on water” 1,3-dipolar cycloadditions with MVK transition structure from the QM/MM/MC calculations.
Figure S4. (A) Side and (B) overhead illustration of “on water” 1,3-dipolar cycloadditions with MAC transition structure from the QM/MM/MC calculations.
Figure S5. (A) Side and (B) overhead illustration of “on water” 1,3-dipolar cycloadditions with MVK transition structure from the QM/MM/MC calculations.
Figure S6. Solute-solvent energy pair distribution for the transition structure (solid) and reactant (solid) of the 1,3-dipolar cycloadditions of 1,3-dipolar 1 and MAC at CH3CN, in water, and on water. The ordinate records the number of solvent molecules that interact with the solutes with their interaction energy on the abscissa. Units for the ordinate are number of molecules per kcal/mol.
Figure S7. Solute-solvent energy pair distribution for the transition structure (solid) and reactant (solid) of the 1,3-dipolar cycloadditions of 1,3-dipolar 1 and STY at CH3CN, in water, and on water. The ordinate records the number of solvent molecules that interact with the solutes with their interaction energy on the abscissa. Units for the ordinate are number of molecules per kcal/mol.
Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MVK optimizations in PCM:

Water transition structure

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequencies</td>
<td>Red. masses</td>
<td>Frc const</td>
</tr>
<tr>
<td>A</td>
<td>-353.6722</td>
<td>10.5159</td>
<td>0.7750</td>
</tr>
<tr>
<td>A</td>
<td>36.9766</td>
<td>4.8019</td>
<td>0.0039</td>
</tr>
<tr>
<td></td>
<td>44.5820</td>
<td>7.4867</td>
<td>0.0088</td>
</tr>
</tbody>
</table>

IR Inten

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400.4743</td>
<td>11.1231</td>
<td>20.1260</td>
</tr>
</tbody>
</table>

Sum of electronic and zero-point Energies= -872.947542
Sum of electronic and thermal Energies= -872.930029
Sum of electronic and thermal Enthalpies= -872.929085
Sum of electronic and thermal Free Energies= -872.993605

C | 0.73341800 | -1.0959800 | -1.26498900 |
N | -0.52548500 | -1.54561400 | -1.00714300 |
H | 0.94322900 | -2.27878100 | -2.16349600 |
N | -0.84043900 | -0.86183400 | 0.13562200 |
C | -3.10397100 | -1.14383200 | -0.66251000 |
C | -2.70553100 | -0.46119500 | 1.59965200 |
N | -3.89976600 | -1.58311900 | -1.36922000 |
N | -3.10852600 | -0.40140900 | 2.67644700 |
C | -1.00851800 | 2.00452100 | 0.22666100 |
H | -1.03062300 | 2.41699600 | 1.22979800 |
C | 0.11626400 | -0.46040300 | 0.23997400 |
C | 0.11626400 | -0.46040300 | 0.23997400 |
C | -2.18286100 | 1.36547600 | -0.26048300 |
H | -3.12077700 | 1.66732200 | 0.19552100 |
H | -2.27681400 | 1.25323300 | -1.33548600 |
C | 0.06377800 | -0.22388400 | 0.90626700 |
H | -0.28511900 | 0.19133500 | 1.83694000 |
C | 1.80478500 | -1.20156000 | -0.4609100 |
C | 3.15507500 | -1.43692500 | -0.75394400 |
C | 1.44740500 | -0.43463100 | 0.66910100 |
C | 4.12846800 | -0.91441300 | 0.07600600 |
H | 3.42362700 | -2.02538400 | -1.62248400 |
C | 2.44838600 | 0.09092600 | 1.50245500 |
C | 3.77372400 | -0.15261000 | 1.20148200 |
H | 5.17413000 | -1.09206800 | -0.14032800 |
H | 2.17496600 | 0.67827100 | 2.36936400 |
H | 4.55059600 | 0.24786600 | 1.84024200 |
C | 0.22900700 | 2.03850700 | -2.02843000 |
H | -0.37884000 | 1.18422100 | -2.32224600 |
CH$_3$CN transition structure

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-0.07751700</td>
<td>2.89467800</td>
<td>-2.63636600</td>
</tr>
<tr>
<td>H</td>
<td>1.27421200</td>
<td>1.82971600</td>
<td>-2.25845000</td>
</tr>
</tbody>
</table>

Frequencies

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freqs --</td>
<td>-358.1136</td>
<td>36.3808</td>
<td>47.4716</td>
</tr>
<tr>
<td>Red. masses --</td>
<td>10.5290</td>
<td>4.8826</td>
<td>7.4787</td>
</tr>
<tr>
<td>Frc consts --</td>
<td>0.7956</td>
<td>0.0038</td>
<td>0.0099</td>
</tr>
<tr>
<td>IR Inten --</td>
<td>391.9964</td>
<td>9.2462</td>
<td>19.3566</td>
</tr>
</tbody>
</table>

Sum of electronic and zero-point Energies=
-872.946852

Sum of electronic and thermal Energies=
-872.929355

Sum of electronic and thermal Enthalpies=
-872.928411

Sum of electronic and thermal Free Energies=
-872.992826
Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MAC optimizations in PCM:

Water transition structure

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Frequencies</td>
<td>25.5986</td>
<td>47.9038</td>
</tr>
<tr>
<td></td>
<td>-411.9268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Red. masses</td>
<td>5.2734</td>
<td>5.8751</td>
</tr>
<tr>
<td></td>
<td>10.9107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Frc consts</td>
<td>0.0079</td>
<td>0.0020</td>
</tr>
<tr>
<td></td>
<td>1.0908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>IR Inten</td>
<td>4.3234</td>
<td>4.6187</td>
</tr>
<tr>
<td></td>
<td>445.9180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum of electronic and zero-point Energies= -948.198419
Sum of electronic and thermal Energies= -948.179940
Sum of electronic and thermal Enthalpies= -948.178995
Sum of electronic and thermal Free Energies= -948.245965
CH$_3$CN transition structure

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.31157100</td>
<td>-1.15975500</td>
<td>2.31469100</td>
</tr>
<tr>
<td>C</td>
<td>-2.26785300</td>
<td>-1.13290600</td>
<td>-1.43663800</td>
</tr>
<tr>
<td>C</td>
<td>-3.59545100</td>
<td>-1.26090800</td>
<td>-1.07642100</td>
</tr>
<tr>
<td>H</td>
<td>-5.02148300</td>
<td>-1.36918100</td>
<td>0.53594700</td>
</tr>
<tr>
<td>H</td>
<td>-1.97694600</td>
<td>-1.12407200</td>
<td>-2.47955300</td>
</tr>
<tr>
<td>H</td>
<td>-4.35235900</td>
<td>-1.35641900</td>
<td>-1.84463600</td>
</tr>
<tr>
<td>O</td>
<td>-0.10811400</td>
<td>2.38546600</td>
<td>0.51094600</td>
</tr>
<tr>
<td>C</td>
<td>-1.16667400</td>
<td>3.13624500</td>
<td>1.12959500</td>
</tr>
<tr>
<td>H</td>
<td>-0.85071900</td>
<td>3.29071200</td>
<td>2.15813800</td>
</tr>
<tr>
<td>H</td>
<td>-1.30002500</td>
<td>4.09472300</td>
<td>0.62848300</td>
</tr>
<tr>
<td>H</td>
<td>-2.10218700</td>
<td>2.57878700</td>
<td>1.10221900</td>
</tr>
</tbody>
</table>

Frequencies -- -412.7982 25.6464 48.0514
Red. masses -- 10.9065 5.2833 5.9352
Frc const -- 1.0950 0.0020 0.0081
IR Inten -- 435.9347 4.3281 4.4816

Sum of electronic and zero-point Energies= -948.197829
Sum of electronic and thermal Energies= -948.179347
Sum of electronic and thermal Enthalpies= -948.178403
Sum of electronic and thermal Free Energies= -948.245381
Condensed-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and STY optimizations in PCM:

Water transition structure

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Frequencies</td>
<td>-417.8401</td>
<td>29.7182</td>
<td>46.6946</td>
</tr>
<tr>
<td>Red. masses</td>
<td>11.3743</td>
<td>5.5301</td>
<td>5.5905</td>
</tr>
<tr>
<td>Frc consts</td>
<td>1.1700</td>
<td>0.0029</td>
<td>0.0072</td>
</tr>
<tr>
<td>IR Inten</td>
<td>851.3613</td>
<td>3.6999</td>
<td>3.9263</td>
</tr>
</tbody>
</table>

Sum of electronic and zero-point Energies = -951.328931
Sum of electronic and thermal Energies = -951.310279
Sum of electronic and thermal Enthalpies = -951.309335
Sum of electronic and thermal Free Energies = -951.377064
CH₃CN transition structure

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freqs</td>
<td>-417.8401</td>
<td>29.7182</td>
<td>46.6946</td>
<td></td>
</tr>
<tr>
<td>Masses</td>
<td>11.3743</td>
<td>5.5301</td>
<td>5.5905</td>
<td></td>
</tr>
<tr>
<td>Frconst</td>
<td>1.1700</td>
<td>0.0029</td>
<td>0.0072</td>
<td></td>
</tr>
<tr>
<td>IR Inten</td>
<td>851.3613</td>
<td>3.6999</td>
<td>3.9263</td>
<td></td>
</tr>
</tbody>
</table>

Sum of electronic and zero-point Energies= -951.328931

Sum of electronic and thermal Energies= -951.310279

Sum of electronic and thermal Enthalpies= -951.309335

Sum of electronic and thermal Free Energies= -951.377064
Gas-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MVK optimizations:

transition structure

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

- **Frequencies**
 - 409.6176
 - 31.3064
 - 58.0059

- **Red. masses**
 - 10.7654
 - 5.3210
 - 6.5169

- **Frc const**
 - 1.0642
 - 0.0031
 - 0.0129

- **IR Inten**
 - 157.2157
 - 3.3732
 - 2.2452

Sum of electronic and zero-point Energies

- -872.924426

Sum of electronic and thermal Energies

- -872.906963
Sum of electronic and thermal Enthalpies= -872.906019
Sum of electronic and thermal Free Energies= -872.970149

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.66580500</td>
<td>-1.67952700</td>
<td>-1.29439300</td>
</tr>
<tr>
<td>N</td>
<td>-0.59030500</td>
<td>-1.51302400</td>
<td>-1.03748500</td>
</tr>
<tr>
<td>H</td>
<td>0.87041000</td>
<td>-2.22193200</td>
<td>-2.21168100</td>
</tr>
<tr>
<td>N</td>
<td>-0.90925100</td>
<td>-0.87308800</td>
<td>0.12899500</td>
</tr>
<tr>
<td>C</td>
<td>-3.17626500</td>
<td>-1.00254400</td>
<td>-0.71591700</td>
</tr>
<tr>
<td>C</td>
<td>-2.75451700</td>
<td>-0.45269500</td>
<td>1.59947800</td>
</tr>
<tr>
<td>N</td>
<td>-3.98064300</td>
<td>-1.32563700</td>
<td>-1.47474700</td>
</tr>
<tr>
<td>N</td>
<td>-3.12800600</td>
<td>-0.37779000</td>
<td>2.68731500</td>
</tr>
<tr>
<td>C</td>
<td>-0.81437800</td>
<td>1.93521900</td>
<td>0.31152100</td>
</tr>
<tr>
<td>H</td>
<td>0.72817400</td>
<td>2.31912400</td>
<td>1.32188200</td>
</tr>
<tr>
<td>C</td>
<td>0.31528000</td>
<td>2.29879800</td>
<td>0.90251500</td>
</tr>
<tr>
<td>O</td>
<td>1.33163400</td>
<td>2.78152300</td>
<td>-0.05413500</td>
</tr>
<tr>
<td>C</td>
<td>-2.25733000</td>
<td>-0.46456600</td>
<td>0.24776700</td>
</tr>
<tr>
<td>C</td>
<td>-2.08077400</td>
<td>1.51515500</td>
<td>-0.14126400</td>
</tr>
<tr>
<td>H</td>
<td>-2.95170300</td>
<td>1.82778600</td>
<td>0.42277100</td>
</tr>
<tr>
<td>H</td>
<td>-2.25939800</td>
<td>1.45858900</td>
<td>-1.20901300</td>
</tr>
<tr>
<td>C</td>
<td>0.00528300</td>
<td>-0.22364000</td>
<td>0.90251500</td>
</tr>
<tr>
<td>H</td>
<td>-0.33595300</td>
<td>0.09275400</td>
<td>1.87428800</td>
</tr>
<tr>
<td>C</td>
<td>1.74436000</td>
<td>-1.20697900</td>
<td>-0.47676400</td>
</tr>
<tr>
<td>C</td>
<td>3.09255000</td>
<td>-1.45156800</td>
<td>-0.76818900</td>
</tr>
<tr>
<td>C</td>
<td>1.39273300</td>
<td>-0.45788800</td>
<td>0.66711900</td>
</tr>
<tr>
<td>C</td>
<td>4.07345700</td>
<td>-0.95012900</td>
<td>0.06560900</td>
</tr>
<tr>
<td>H</td>
<td>3.35505300</td>
<td>-2.03023200</td>
<td>-1.64613000</td>
</tr>
<tr>
<td>C</td>
<td>2.40042200</td>
<td>0.05468000</td>
<td>1.49740100</td>
</tr>
<tr>
<td>C</td>
<td>3.72450400</td>
<td>-0.19494300</td>
<td>1.19470600</td>
</tr>
<tr>
<td>H</td>
<td>5.11754500</td>
<td>-1.13297700</td>
<td>-0.15561600</td>
</tr>
<tr>
<td>H</td>
<td>2.13481500</td>
<td>0.65538000</td>
<td>2.35763600</td>
</tr>
<tr>
<td>H</td>
<td>4.50355900</td>
<td>0.20522200</td>
<td>1.83145100</td>
</tr>
<tr>
<td>C</td>
<td>0.21990700</td>
<td>2.10694000</td>
<td>-2.04769900</td>
</tr>
<tr>
<td>H</td>
<td>-0.27049600</td>
<td>1.17524000</td>
<td>-2.33413200</td>
</tr>
<tr>
<td>H</td>
<td>-0.36075600</td>
<td>2.92775200</td>
<td>-2.47930400</td>
</tr>
<tr>
<td>H</td>
<td>1.22323300</td>
<td>2.13998300</td>
<td>-2.46856000</td>
</tr>
</tbody>
</table>

Gas-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and MAC optimizations:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Frequencies --</td>
<td>-412.3038</td>
<td>30.2289</td>
<td>45.9713</td>
</tr>
<tr>
<td>Red. masses --</td>
<td>10.8425</td>
<td>5.2342</td>
<td>5.1990</td>
</tr>
<tr>
<td>Frc consts --</td>
<td>1.0860</td>
<td>0.0028</td>
<td>0.0065</td>
</tr>
<tr>
<td>Element</td>
<td>C</td>
<td>N</td>
<td>H</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Atomic coordinates (Angstroms)</td>
<td>-0.56027500</td>
<td>-0.79116100</td>
<td>3.26565200</td>
</tr>
<tr>
<td></td>
<td>-1.05052800</td>
<td>0.10030600</td>
<td>0.91446400</td>
</tr>
<tr>
<td></td>
<td>1.85504300</td>
<td>2.91407200</td>
<td>1.12737200</td>
</tr>
<tr>
<td></td>
<td>-1.0663</td>
<td>-0.94246500</td>
<td>1.58329700</td>
</tr>
<tr>
<td></td>
<td>0.4455</td>
<td>0.26243300</td>
<td>0.855200</td>
</tr>
<tr>
<td></td>
<td>-1.05052800</td>
<td>0.10030600</td>
<td>3.26565200</td>
</tr>
<tr>
<td></td>
<td>1.85504300</td>
<td>2.91407200</td>
<td>1.12737200</td>
</tr>
<tr>
<td></td>
<td>-1.0663</td>
<td>-0.94246500</td>
<td>1.58329700</td>
</tr>
<tr>
<td></td>
<td>0.4455</td>
<td>0.26243300</td>
<td>0.855200</td>
</tr>
</tbody>
</table>

Sum of electronic and zero-point Energies= -948.176536
Sum of electronic and thermal Energies= -948.158068
Sum of electronic and thermal Enthalpies= -948.157124
Sum of electronic and thermal Free Energies= -948.223895

Gas-phase B3LYP/6-311+G(2d,p) 1,3-dipolar 1 and STY optimizations:

transition structure
Frequencies

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-416.8231</td>
<td>24.8506</td>
<td>45.3160</td>
</tr>
</tbody>
</table>

Red. masses

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.4991</td>
<td>5.3364</td>
<td>5.0119</td>
</tr>
</tbody>
</table>

Frc consts

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.1771</td>
<td>0.0019</td>
<td>0.0061</td>
</tr>
</tbody>
</table>

IR Inten

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>217.2986</td>
<td>1.3937</td>
<td>1.6241</td>
</tr>
</tbody>
</table>

Sum of electronic and zero-point Energies

\[-951.306254\]

Sum of electronic and thermal Energies

\[-951.287575\]

Sum of electronic and thermal Enthalpies

\[-951.286631\]

Sum of electronic and thermal Free Energies

\[-951.354427\]
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-2.81507100</td>
<td>-1.94871400</td>
<td>0.58417300</td>
</tr>
<tr>
<td>C</td>
<td>-4.67078800</td>
<td>-0.14756300</td>
<td>-0.48971300</td>
</tr>
<tr>
<td>H</td>
<td>-6.07639000</td>
<td>-1.75514100</td>
<td>-0.34368600</td>
</tr>
<tr>
<td>H</td>
<td>-2.10134500</td>
<td>-2.64775400</td>
<td>1.00478600</td>
</tr>
<tr>
<td>H</td>
<td>-5.38499100</td>
<td>0.55649500</td>
<td>-0.90113500</td>
</tr>
</tbody>
</table>