SUPPORTING INFORMATION

The Interaction of H₂O₂ with TiAlPO-5 Molecular Sieves. Probing the Catalytic Potential of Framework Substituted Ti Ions.

Chiara Novara a), Almudena Alfayate b), Gloria Berlier a), Sara Maurelli a), Mario Chiesa a)*

a) Dipartimento di Chimica, Università di Torino and NIS Centre of Excellence, Via Giuria 7, 10125-Torino,Italy
b) Instituto de Catálisis y Petroleoquímica, ICP-CSIC, C/ Marie Curie 2, 28049 Madrid, Spain

S1 UV-Vis spectra of calcined TiAlPO-5 reacted with aqueous H₂O₂.

Figure S1. DR UV-Vis spectra of a) Calcined TiAlPO-5, b) in contact with aqueous H₂O₂ and c) after room temperature outgassing. Spectra were arbitrarily normalized for easier comparison.
S2. Experimental ENDOR Spectra

Figure S2. Experimental Mims ENDOR spectra of O\textsubscript{2} on TiAlPO-5 obtained by reaction of the calcined sample with A) hydrated H\textsubscript{2}O\textsubscript{2} and B) anhydrous H\textsubscript{2}O\textsubscript{2} (from UHP). The spectra are taken at three different magnetic field settings corresponding to a) g_{zz} component ($B_0 = 344.4$ mT), b) g_{yy} component ($B_0 = 346.6$ mT) and c) g_{xx} component ($B_0 = 348.3$ mT).
S3. Computer simulations of 31P ENDOR spectra of TiAlPO-5 obtained by reaction with anhydrous H$_2$O$_2$ (from UHP)

Figure S3. Experimental (black line) and simulated (grey line) 31P Mims ENDOR spectra of O$_2^-$ on TiAlPO-5 obtained by reaction of the calcined sample with anhydrous H$_2$O$_2$ (from UHP) measured at three different magnetic field settings corresponding to a) g_{zz} component ($B_0 = 344.4$ mT), b) g_{yy} component ($B_0 = 346.6$ mT) and c) g_{xx} component ($B_0 = 347.7$ mT). The asterisk indicates the 31P signal belonging to the remote phosphorous nuclei, which are not taken into account in the simulation. The simulated parameters are listed in Table 1 in the main text.