Supplementary Material for

Novel Insights on Magadiite Disaggregation: A multitechnique study on thermal stability

Juliana Martins de Souza e Silva,a,b Geo Paul,a James Bendall, c Chiara Bisio,a Heloise O. Pastore,a,b and Leonardo Marchesea,d

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure1}
\caption{13C solid state variable contact time CPMAS NMR spectra of CTA-magadiite at a MAS rate of 10 kHz.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure2}
\caption{2D 1H-13C HETCOR (a) and 1H-29Si HETCOR (b) NMR spectra of CTA-magadiite along with 2D projections on the 13C and 29Si dimensions. A MAS rate of 12240 Hz and a contact time of 0.3 ms and 2 ms was used in the 1H-13C HETCOR and 1H-29Si HETCOR experiments, respectively. 1H MAS NMR spectrum of CTA-magadiite is given in the 1H dimension.}
\end{figure}
Figure S3. 2D 1H-13C HETCOR (a) and 1H-29Si HETCOR (b) NMR spectra of disaggregated magadiite along with 2D projections on the 13C and 29Si dimensions. A MAS rate of 12240 Hz and a contact time of 2 ms was used in the experiments. 1H MAS NMR spectrum of disaggregated magadiite is given in the 1H dimension.

Figure S4. 1H-29Si-1H double CP spectra on CTA-magadiite (b) and disaggregated magadiite (d). The efficiency of the technique is demonstrated by comparing with the 1H MAS NMR spectra of CTA-magadiite (a) and disaggregated magadiite (c) (see text for details).