
1  

Supporting Information: 
 

 
Environment-driven reactivity of H2  on  PdRu surface alloys 

 

 

M. Ramos,1   M. Minniti,2   C. Dı́az,3   D. Faŕıas,2   R. Miranda,2, 4
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EXPERIMENTAL DETAILS 
 

 

Experiments  have been carried  out  in a Helium Atom  Scattering  (HAS) apparatus  de- 

scribed elsewhere [1].  The angular  distribution of the  scattered  atoms  are measured  with 

a quadrupole  mass spectrometer  mounted  on a two–axis goniometer.  Details on Ru(0001) 

surface preparation can be found elsewhere [2]. Surface cleanliness and order was checked 

using low-energy electron diffraction (LEED) and HAS. In order to detect the specularly 

reflected He beam in measurements  like the one shown in Fig. 1, an angle of incidence differ- 

ent from normal incidence must be used.  Therefore, such data  have been measured with an 

angle of incidence Θi = 15◦, which is the smallest angle which allows detection  of specular 

diffraction, owing to limitations  in the rotating  system of our detector. 

A critical  issue in  the  current  experiments  is the  determination of the  Pd  coverage. 

The  evaporator  has been calibrated  by measuring  the  completion  of the  first Pd  layer on 

Ru(0001), on which it grows epitaxially  [3, 4]. Pd  was deposited  from a commercial evap- 

orator,  using a Pd  rod.   The  quality  of evaporated  films has been checked by monitoring 

the intensity  of the specular He beam as a function of deposition time taking  advantage  of 

the high sensitivity  of HAS to surface defects [5, 6]. A typical deposition curve is shown in 

Fig. SI 1.  The maximum  observed corresponds  to the completion  of the first Pd  epitaxial 

layer, which forms when Pd is deposited at a surface temperature of 700 K [3, 4]. The first 
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FIG.  SI 1. Intensity of the specularly  reflected He beam during  Pd evaporation on Ru(0001)  as a 

function  of time.  The evaporation rate  is ∼ 0.03 ML/min. The surface temperature is 700 K. 
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maximum in the reflected He specular intensity  occurs after about  40 minutes,  which corre- 

sponds to an evaporation  rate  of ∼ 0.03 ML/min.   Thus,  with this technique  we were able 
 

to determine  the amount of deposited  Pd  at  intermediate coverages with a daily precision 

of ca. 1%. 

 

 
COMPUTATIONAL DETAILS 

 

 

Let us consider a gas of molecular hydrogen at temperature Tg  in contact  with a surface. 

The number of molecules impinging the surface per unit time on a unit area with a center of 

mass velocity v, with spherical coordinates  within the ranges (v, v + dv); (θv , θv + dθv ) and 

(φv , φv  + dφv ), and  in a rovibrational  state  characterized  by the  quantum numbers  (ν ,J ) 

and energy E(ν ,J ), is [7]: 
 

 

d3f  = n 

  
M

 

2πkB Tg 

\3/2  
FB (ν, J ; Tg ) exp 

l 
M v2  

l
 

− 
2kB Tg 

 

v3 cos θv sin θv dvdθv dφv .  (SI. 1) 

 

In Eq. SI. 1, FB (ν, J ; Tg ) is the Boltzmann  weight factor, 
 
 

FB (ν, J ; Tg ) = 

 

w(J ) exp 
 

 

 
E(ν,J ) 

 
 

kB Tg 

 
 
,  (SI. 2) 

E(ν,J )
 z

ν,J  w(J ) exp − 
kB Tg 

n is the density of molecules in the gas, M the mass of the molecules, and kB the Boltzmann 

constant.  In addition, 
 

 
 
 
 

for H2, and 
 

 
 
 
 

for D2 . 

 
w(J ) = 
 

 
 
 
 

w(J ) = 

 
 (2J + 1),  if J  is even 

 3(2J + 1),  if J  is odd 
 

 

 2(2J + 1),  if J  is even 

 (2J + 1),  if J  is odd 

 
(SI. 3) 
 

 
 
 
 

(SI. 4) 

Accordingly, the thermally  averaged initial sticking probability,  s0(Tg ), can be computed 

as follows: 
 

0 dv 
  
 
π/2 

 

dθv 

   2π 
 

dφv  v
3 cos θv sin θv exp 

   
 M v2   

 
 − 

 

s̄0(v, θv , φv )
 

s0(Tg ) = 0 

  +∞
 

0 

π/2 2π
 

2kB Tg 
   

 M v2   
  ,  (SI. 5) 

 

 
 

where 

0 dv 
 
 dθv 

  

0 dφv  v
3 cos θv sin θv exp − 

2kB Tg 

s̄0(v, θv , φv ) = 
) 

w(J ) FB (ν, J ; Tg ) s0 (v, θv , φv , ν, J ),  (SI. 6) 
ν,J 
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and s0(v, θv , φv , ν, J ) is the rovibrational-state-selective initial sticking probability. 
 

If s̄0  scales with total  energy [i.e. s̄0(v, θv , φv ) = s̄0(v)], Eq. SI. 5 reduces to: 
 

+∞  M v2   3  π/2 2π
 

0  exp  − 
2kB Tg

 s̄0(v) v dv 0  cos θv sin θv dθv 0    dφv 

s0(Tg ) = 
+∞  M v2 

0  − 
 

v3dv 
 

0  cos θv sin θv dθv
 

 

0    dφv
 

2kB Tg 

+∞   M v2    3
 

0  exp  − 
2kB Tg

 

= 
s̄0(v) v dv 

.  (SI. 7) 
+∞   M v2    3

 

0  exp  − 
2kB Tg      

v dv 
 

Then,  using M v2/2 = E (M vdv = dE),  one finally obtains: 
 

+∞     E  
 

0 E exp  − 
kB T

 s̄0(E)  dE 
s0(Tg ) = 

0  E exp  − 
kB T    

dE 

= (kB Tg )
−2

 

   +∞ 

 
0 

 

E exp 
E 

− 
kB T 

l 

s̄0 (E) dE.  (SI. 8) 

Instead  of using  spherical  coordinates  (v, θv , φv ),  one can  use cylindrical  coordinates, 

(v⊥, v , φv ), being v⊥  = v cos θv  and  v   = v sin θv  the  components  of v perpendicular  and 

parallel to the surface respectively (v2  = v2  + v2).  Taking into account that  for any function 
⊥ 

 

g(v), 
 

   +∞  

v2dv 

 
 
π/2  

sin θ dθ
 

2π 

dφ  g(v, θ , φ ) = 
 

0 0 
   +∞ 

v 

   +∞ 

v  v  v  v 
0 
   2π 

 
0 

 

Eq. SI. 5 can be re-written  as: 

dv⊥ 
0 

v dv  
0 

dφv  g(v⊥, v , φv ),  (SI. 9) 

 
 

0  v⊥dv⊥
 

 

0 v dv 
 

 

0    dφv exp
 M (v 

− 

2 +v2 ) 
l

 
s̄  (v 

B   g 

 

, v , φ )
 

s0(Tg ) = 
⊥ 

2k   T 
  

I 

0  ⊥ 

M (v2 2   
l 

v 

.  (SI. 10) 

0 v⊥dv⊥ 0 v dv  0    dφv exp  − 
+v ) 

⊥ I 

2kB Tg 

 
Eq.  SI. 10 is particularly convenient  if 

 

s̄0 (v⊥)], because it can be reduced to: 

s̄0   scales with  normal  energy [i.e. s̄0(v⊥, v , φv ) = 

+∞  M v2    
l 

+∞  M v
I   

l 
2π

 

0 exp − 
2k 

⊥ 

B Tg 
s̄0(v⊥) v⊥dv⊥ 0  exp − 

2kB Tg
 v dv 0    dφv 

s0(Tg ) = l 
M v2    

l 
+∞  M v2 

+∞     2π
 

0 exp − 
2k 

⊥ 

B Tg 
v⊥dv⊥ 0  exp − 

2kB Tg 
v dv 0    dφv 

+∞  M v2    
l 

0 exp 
= 

− 
2k 
  

⊥ 

B Tg 
s̄0(v⊥) v⊥dv⊥ 

l 
 
.  (SI. 11) 

+∞  M v2 

0 exp − 
2k 

⊥ 

B Tg 
v⊥dv⊥ 

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2013



5  

i 

⊥ Then,  using M v2 /2 = E 
⊥ (M v⊥ dv⊥ = dE⊥ ), one finally obtains: 

+∞  E⊥  
 

0 exp  − 
kB Tg

 s̄0 (E⊥) dE⊥ 

s0 (Tg ) = 
+∞

  

 E  
 

0 exp  − 
k 

+∞ 

⊥ 

B Tg 
dE⊥ 

E⊥  
l 

= (kB Tg )
−1

 
0 

exp  −  
kB T 

s̄0(E⊥ ) dE⊥ .  (SI. 12) 

 

For simplicity, Eqs. SI. 8 and SI. 12 can be written  in a single expression: 
 
 

s0(Tg ) = 
+∞ 

fB (Ei ) s̄0(Ei ) dEi  (SI. 13) 
0 

 

with 
 

 

fB (Ei ) = (kB Tg )
−(α+1) Eα

 

 
 
exp 

 

l 
Ei   

l
 

− 
kB Tg 

 
 
(SI. 14) 

being α equal to 0 or 1 if the sticking probability  scales with normal or total  energy respec- 
 

tively,  and 
 

s̄0(Ei ) the  thermally  averaged  (over ν, J ) rovibrational-state-selective sticking 
 

probability  for impact  energy Ei  at normal incidence: 
 

s̄0(Ei ) = 
) 

w(J ) FB (ν, J ; Tg ) s0(v = 
ν,J 

.   

2Ei /M , θv  = 0, ν, J ).  (SI. 15) 

 

In order to compute s0 , in this work we have carried out the so-called quasi-classical tra- 

jectory (QCT)  calculations in which, the rovibrational  energy E(ν ,J) of molecular hydrogen 

in vacuum is taken into account for the sampling of the initial conditions  (see e.g. ref. [8]). 
 

 
 
ELECTRONIC STRUCTURE OF  PDxRU1−x/RU(0001) 

 

 

In order to rationalize  the increasing reactivity  of Ru atoms in the Pdx Ru1−x/Ru(0001) 

alloys  with  the  increase  of  nearest   neighbor  (NN)  Pd  atoms,   we  have  computed   the 

projected  density  of d-states   (PDOS)   on  a  topmost-layer   Ru  atom  of pure  Ru(0001), 

Pd0.11 Ru0.89/Ru(0001) (we selected a Ru NN of the Pd  atom),  and Pd0.89Ru0.11/Ru(0001) 

(the  Ru atom  is surrounded  by all Pd  atoms).   The main features  of the three  Ru-PDOSs 

are similar to each other,  in particular the  width  of the  d-band.   However, comparing  the 

position of the center of the d-band  it is observed a small but  systematic  up-shift  with the 

number  of NN Pd  atoms:   from ∼ -1.9 eV for 0 Pd  to  ∼ -1.6 eV for 6 Pds,  being these 

energies defined with  respect  to the  Fermi  level of each surface.  Thus,  the  d-band  model 

[9] that  predicts  direct  correlation  between  reactivity  and the  height  of the  d-band  center 

(due to the consequent lower population  of anti-bonding  metal-adsorbate states)  allows one 
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FIG.  SI 2.  Density  of d-states   projected  on a topmost-layer  Ru  atom  of Ru(OOOl) (top  panel), 

Pdo.uRuo.sg/Ru(OOOl)  (middle panel) and Pdo.sgRuo.u/Ru(OOOl)  (bottom  panel). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
FIG.  SI 3.  Initial  (left  panels)  and  final (right  panels)  positions  of the  molecular center  of mass 

for  reactive  trajectories at  impact  energies  Ei=0.3 eV,  0.2 eV,  0.1 eV,  and  0.01 eV  (at  normal 

incidence) for H2(v=O,J=O)/Pdo.96Ruo.o4/Ru(0001). 

 
to rationalize the  observed increasing reactivity of Ru  atoms with  increasing number of NN 

Pd  atoms. 
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DYNAMICS RESULTS 

Pd-rich surface alloys 

In Fig. 4 we have shown a non-monotonic  Ei -dependence of the reactive sticking proba- 
 

bility of H2(ν =0,J=0) on Pd0.96Ru0.04 /Ru(0001). In order to fully understand this behavior, 

we have analyzed the classical trajectory followed by the molecules in their way towards the 

surface.  In Fig. SI 3 we show the  initial  (left panels)  and  final (right  panels)  position  of 

the molecular center of mass (CM) for all the reactive trajectories  at Ei =0.3,  0.2, 0.1, and 

0.01 eV. For the highest incidence energy considered (i.e. Ei = 0.3 eV) for which s0  is high 

(∼ 0.3), the almost uniform distribution of final CM positions shows that  dissociation takes 

place almost  everywhere over the  unit  cell, regardless  the  position  of the  most  active  Ru 

atoms.  For Ei =0.2  eV the scenario is similar to the previous case, but  a closer look to Fig. 

SI 3 shows that  the density  of dissociation  events is slightly higher around  the Ru atoms. 

Though  for any Ei  value lower than  ∼ 0.12 eV, H2  molecules only dissociate  around  the 

reactive Ru atoms,  the distributions of the initial CM positions of the reactive trajectories 

for Ei =0.01 eV and 0.1 eV differ significantly from each other.  For Ei =0.1 eV almost all the 

molecules that  dissociate were already around  the Ru atoms at the beginning of the trajec- 

tory,  which explains the low sticking probability  observed in Fig. 4 for this value of Ei .  In 

contrast, for Ei =0.01 eV even H2  molecules impinging the surface far from the reactive sites 

still can find the active Ru sites and dissociate.  The lowest panels of Fig. SI 3 clearly show 

that  Pd  patches  act  as snares for low energy molecules that  remain  dynamically  trapped 

near the surface which increases the probability  for a molecule of encountering  an active Ru 

site.  This is the reason for the increase of s0  at very low Ei  values observed in Fig. 4. This 

trapping-mediated dissociation mechanism is confirmed by a large number of rebounds near 

the  surface, and long interaction times before dissociation  for reactive  trajectories  at  very 

low incidence energies. In addition,  we have verified that  for low impact energies (Ei ≤ 0.15 

eV) s0  scales with total  energy [10]. 

The non-monotonic  Ei -dependence of the sticking probability  of H2  molecules discussed 

above is observed for different alloys Pdx Ru1−x/Ru(0001).  In Figs. SI 4 and SI 5 we show 

the curves s0(Ei ) obtained  for various x-values  (0.83 ≤ x ≤ 1) and 0 ≤ J  ≤ 3, for H2  and 

D2  molecules respectively.  The results  for H2  and D2  are very similar to each other,  which 
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FIG.  SI 4.  Rovibrational-state-selective initial  sticking  probability  of H2 (v = 0,  J=O , 1, 2, 3) on 

PdxRul-x /Ru(0001) surfaces with  x  = 0.83, 0.89, 0.96, and 1, as a function  of the  impact  energy 

Ei at  normal incidence, obtained  in QCT calculations. 
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FIG.  SI 5. Idem Fig. SI 4 but  for D2. 
 
 
shows  that the  isotopic  effects on  the  reactive sticking probability for  these surface alloys 

are  very  small. In  addition, rotational effects  are  also  minor  at least  for  J <:::  3. 

In order  to  compare our  theoretical results with  experiments (ref. [11] and  present work), 
 

we have computed s0 (T9
)  at  room  temperature (RT,  i.e. for T

9
=298 K)  as a function of the 

fraction of Pd  atoms in the  alloy  (0.83  <:::   x <:::  1)  using  Eqs.  SI.  13-15  with  a = 1 (i.e.  the 

value  corres ponding to  total energy scaling). The  results for H2  and  D2   are  s ummarized  in 

Table  I (the  former  have  been  also  plotted in Fig.  1a).  As expected from  the  res ults s hown 

in Figs. SI 4 and  SI 5, the values  of s0 (T9=298K) for H 2 and  D2  are very close to each  other. 
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7 × 

 

x s0(Tg =298K)  for H2 s0(Tg =298K)  for D2 

0.83 
 

0.89 
 

0.94 
 

0.96 
 

0.97 
 

0.98 
 

1.00 

1.781 ×10−1
 

1.232 ×10−1
 

7.339 ×10−2
 

4.885 ×10−2
 

3.461 ×10−2
 

2.688 ×10−2
 

3.830 ×10−3
 

1.390 ×10−1
 

9.238 ×10−2
 

5.509 ×10−2
 

3.638 ×10−2
 

2.566 ×10−2
 

1.813 ×10−2
 

7.454 ×10−4
 

 

TABLE  I. RT-averaged initial  sticking  probability s0(Tg   = 298K) (see text)  for H2  and D2  inter- 

acting  with Pdx Ru1−x/Ru(0001) surface alloys with 0.83 ≤ x ≤ 1. 

 

 
In particular, in both  cases, the sharp  decrease of s0  observed in experiments  for x ∼ 1 is 

well reproduced. 
 

 
 

Ru-rich surface alloys 
 

 

In contrast  with the case of Pd-rich surface alloys, dynamic trapping  is not likely to take 

place for Ru-rich  alloys because isolated  Pd  atoms  in Pd0.11 Ru0.89 /Ru(0001) do not  allow 

low energy hydrogen molecules (e.g. Ei ∼ 0.01 eV) to approach  the surface below ZC M   ∼ 3 

Å (see Fig. SI 6). Thus, assuming that  in this case dissociation is a direct activated process, 

it is possible to estimate  the  initial  sticking probability  for different  (small)  values of the 

fraction of Pd atoms in the alloy using the following simple model [12]. Let us consider the 

surface alloys Pd0.11 Ru0.89/Ru(0001) (x=0.11) and Pd0.14 Ru0.86/Ru(0001) (x=0.14) modeled 

by (3×3) and (
√    √

7) unit  cells respectively (see Fig. SI 7).  Within  these unit  cells one 

can identify three kind of hexagonal regions: i) centered in a Pd atom (turquoise  hexagon), 

ii) centered in Ru atoms NN of one Pd atom,  RuN N , (red hexagon), and iii) centered in Ru 
√    √   

atoms  surrounded  by Ru atoms  (green hexagon).   In the  case of the  (   7 × 7) unit  cell, 

there  are only regions type  i) and  ii).  Assuming that  for x  <<  1 dissociation  is a direct 

activated process, it is reasonable to compute s0  for x=0.11  (sx=0.11) and x=0.14  (sx=0.14 ) as 
 

follows [12]: 
 

 
 

sx=0.11
 

 
 

1      P d
 

 

 
         RuN N

 

0  0 
 
 

2      Ru
 

0  = 
9 

s0     + 
9 

s0  + 
9 

s0  (SI. 16)
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FIG.  SI 6.   Potential  energy along a DP  of H2   on Pdo 11Ruosg /Ru(0001)  (for a fcc-topPd-hcp 
 

configuration) as a function of the height of the molecule above the surface, ZcM· 

• • • • • • • •  • 
 

 

•  

• • • • • •  
• • 

 
 

FIG.  SI 7. Schematic representation of the (3x 3) (left) and (.,;7 x .,;7) (left) unit cells employed 

to model the PdonRuosg /Ru(OOOl) and Pdo14Ruos6/Ru(0001) surfaces, respectively. 

 

                                                     (SI. 17) 

In Eqs.  SI.  16 and  SI.  17,  sd,  suNN ,  and  s u are  the  parti al sticking  probabilities corre­ 

sponding to trajectories starting within  the  regions type  i), ii), and  iii) respectively. 
 

Given  that we are  interested in a gas of molecules at  RT, sd  can  be neglected  because 

most  of the  molecules  have translational energies  below the  dissociation threshold on  Pd 

atoms  (Ei  0.12 eV).  In  addition, su can  be  approximated by the  sticking  probability 

of molecular  hydrogen  on  pure  Ru(0001).   Kroes  and  co-workers  have computed the  latter 

pr obability as  a function of Ei  for H2 (v=0,1=0) using  both  quantum (Q)  [13] and  QCT 

calculations [14]. These  res ults are shown  in the  inset  of Fig. SI 8.  Finally,  we have approx­ 

imated  s uNN (Ei)  by s u(Ei+8meV) because  the  early  barrier  found  for the  fcc-topRu-hcp 

molecular  configuration on pure  Ru(0001) , decreases  by rv 8 meV on top  of RuNN  atoms  in 

rich-Ru  s urface alloys (see Fig. 5). 

Fig. SI 8 shows s0 ( Ei) !B(Ei) obtained in this  way for x=O (i.e.  pure  Ru(0001)), x=O.ll, 
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FIG.  SI 8.  RT-weighted initial  sticking  probability as a function  of the  initial  impact  energy  at 

normal  incidence,  s0(Ei ) fB (Ei ),  for H2(ν =0,J =0)/Pdx Ru1−x/Ru(0001) with  x = 0, 0.11, and 

0.14 (see text).   Inset:  quantum (Q,  full black line) and  quasi-classical  trajectory (QCT,  dashed 
 

red line) s0(Ei ) curves for H2(ν =0,J =0)/Ru(0001), taken  from refs. [13] and [14] respectively. 

 

and x=0.14  for Tg =298 K and using the Q sticking curve s0 (Ei ) for H2 (ν =0,J =0)/Ru(0001) 

(extrapolated linearly for Ei  → 0).  In this case we have used Eqs. SI. 13 and SI. 14 with 

α=0  because for Ru(0001) and Ru-rich alloys we have assumed that  sRu scales with normal 

energy as expected  for direct  dissociation  over an early activation  barrier.   The  use of Q 

s0(Ei ) curve instead  of the QCT one is because quantum effects are particularly important 

near the threshold  where the contribution to s0(Tg ) is the highest. 

Fig. 1a shows that  for Ru-rich surface alloys, s0 (Tg =298K)  (i.e. the area below the curve 

displayed in Fig. SI 8) presents a scarce dependence on the Pd concentration, x.  In fact, the 

presence of isolated  unreactive  Pd  atoms  in Ru-rich  PdxRu1−x /Ru(0001) alloys is slightly 

overcompensated  by the increased reactivity  of their NN Ru atoms.  Though the use of QCT 

sticking results [14] gives rise to values of s0 (Tg ) smaller than  with the Q ones [13], the small 

x-dependence  for 0 ≤ x ≤ 0.14 remains unchanged. 
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