Support Information for

Low-cost Bio-inspired Integrated Carbon Counter Electrode for High-Efficiency Dye-sensitized Solar Cells

Chunlei Wang, Fanning Meng, Mingxing Wu, Xiao Lin, Tonghua Wang*, Jieshan Qiu, and Tingli Ma*

State Key Laboratory of Fine Chemicals, Carbon Research Laboratory, School of Chemical Engineering, Dalian University of Technology 116024, China

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2013
S1. Fabrication of DSSCs

The DSSCs were fabricated with a photoanode, a CE, and an electrolyte containing 0.06 M of LiI, 0.6 M 1-butyl-3-methylimidazolium iodide, 0.03 M I₂, 0.5 M 4-tert-butyl pyridine (TBP), and 0.1 M guanidinium thiocyanate in acetonitrile. The active area of DSSCs is 0.16 cm² used for photovoltaic performance test. The symmetrical dummy cells with an active area of 0.25 cm² were fabricated with two identical counter electrodes clipping the electrolyte the same as the one used in DSSCs.

Preparation of photo anodes: A 12 μm thick film of TiO₂ nanoparticles (average particle size 20 nm, Degussa, Germany) was coated on cleaned FTO glass by screen-printing. The TiO₂ film was sintered at 500 °C for 30 min, and then cooling to 80 °C. The resulted film was immersed in a 5×10⁻⁴ M solution of N719 dye (Solaronix SA, Switzerland) in acetonitrile/tert-butanol (v:v=1:1) for 12 h.

S2. Characterization

The scanning electron microscopy (SEM) measurements of the pure carbon CE were conducted on a FEI Hitachi S-4800(USA). Nitrogen sorption measurement was carried out with an Antosorb-1 Apparatus (Antosorb-1, Quantachrome, USA). The sheet resistances of counter electrodes were measured by using a four-point resistivity measurement system (RST-9, China). Photovoltaic performance of the DSSCs was conducted in simulated AM 1.5 illumination (100 mW cm⁻², PEC-15, Pcecell, Japan) with a Keithley digital source meter (Keithley 2601, USA). Incident photon to current conversion efficiency (IPCE) was measured on a Hypermono-light (SM25, Jasco Co.
Ltd., Japan), which was calibrated with a monocrystalline silicon diode. The electrochemical impedance spectroscopy (EIS) experiment was carried out using a computer-controlled potentiostat (Zennium Zahner, Germany). The measured frequency ranged from 100 m Hz to 1 M Hz, while the AC amplitude was set at 10 mV. The bias of all EIS measurements was set at -0.75 V. The EIS spectra were fitted by Z-view software. The equivalent circuit diagrams were shown in Fig. S1.

![Equivalent circuit for fitting EIS plots.](image)

Figure S1 Equivalent circuit for fitting EIS plots. R_s: series resistance, R_{ct}: charge transfer resistance in the electrode/electrolyte interface, C_μ: corresponding capacitance in the electrode/electrolyte interface, Z_N: Nernst diffusion resistance.

![Fabrication procedure of the integrated pure carbon counter electrode](image)

Scheme S1 The fabrication procedure of the integrated pure carbon counter electrode for DSSCs.
Figure S2 (a) Top-view SEM images of PCP; and (b) Top-view SEM image of OMC film in a large scale.
Figure S3 N\textsubscript{2} adsorption/desorption isotherms (a) and pore size distribution (b) of OMC catalyst layer. OMC exhibits a type IV isotherm with an H1 hysteresis loop indicating a mesoporous material with cylindrical pores.

Figure S4 (a) Top-view SEM image and (b) schematic model of IPC-CE with a thicker OMC layer.