Supplementary Information

Electrochemical reduction induced self-doping of Ti$^{3+}$ for efficient water splitting performance on TiO$_2$ based photoelectrodes

Zhonghai Zhang,a Mohamed Nejib Hedhili,b Haibo Zhu,c and Peng Wang*a

aWater Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, bImaging and Characterization Laboratory, cKAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

Address correspondence to peng.wang@kaust.edu.sa.

Fig. S1 SEM images of the TiO$_2$ NTs of (a) top view, and (b) cross-sectional view.
Fig. S2 Cross-sectional SEM image of the ECR-TiO$_2$ NTs.

Fig. S3 XRD patterns of the TiO$_2$ NTs and ECR-TiO$_2$ NTs in magnification view in range of 20-30°.
Fig. S4 Schematics of band energy level of Ti$^{2+}$ self-doped ECR-TiO$_2$ NTs.
Fig. S5 XPS survey of the TiO$_2$ NTs and ECR-TiO$_2$ NTs.

Fig. S6 XPS core level of Ti 2p$_{3/2}$ of the TiO$_2$ NTs and ECR-TiO$_2$ NTs in the absence of argon sputtering.
Fig. S7 Na KLL Auger spectra from TiO$_2$ NTs and ECR-TiO$_2$ NTs.
Fig. S8 PEC performance of the ECR-TiO$_2$ NT photoelectrodes reduced with different reduction potential, where x in ECR-(x)-TiO$_2$ NTs was the value of the applied potential (V). (a) linear-sweep voltammograms, collected with a scan rate of 5 mV s$^{-1}$ under simulated solar light (AM 1.5G); (b) photoconversion efficiency as a function of applied potential (calculated using equation 1); (c) summarized photocurrent density and photoconversion efficiency data.
Fig. S9 PEC performance of the ECR-TiO$_2$ NTs photoelectrodes reduced with different duration length. (a) linear-sweep voltammograms, collected with a scan rate of 5 mV s$^{-1}$ under simulated solar light (AM 1.5G); (b) photoconversion efficiency as a function of applied potential (calculated using equation 1); (c) summarized photocurrent density and photoconversion efficiency data.
Fig. S10 SEM image of the TiO$_2$ film on indium tin oxide (ITO) prepared from commercial P25 TiO$_2$ nanoparticles.

Fig. S11 PEC performance of the P25 TiO$_2$ film and ECR-P25 TiO$_2$ film photoelectrodes, prepared on indium tin oxide (ITO) with commercial P25 TiO$_2$ nanoparticles.