Local structure and nanoscale homogeneity of CeO$_2$ - ZrO$_2$: Differences and similarities to parent oxides revealed by luminescence with temporal and spectral resolution

Carmen Tiseanu$^1$, Vasile Parvulescu$^2$, Daniel Avram$^1$, Bogdan Cojocaru$^2$, Magali Boutonnet$^3$ and Margarita Sanchez-Dominguez$^{4,5}$

$^1$ National Institute for Laser, Plasma and Radiation Physics, P.O.Box MG-36, RO 76900, Bucharest-Magurele, Romania
$^2$ University of Bucharest, Department of Chemical Technology and Catalysis, 4–12 Regina Elisabeta Bvd., Bucharest, Romania
$^3$ Kungliga Tekniska Högskolan (KTH), School of Chemistry, Div. of Chemical Technology, Teknikringen 42, SE-10044, Stockholm, Sweden
$^4$ Centro de Investigacion en Materiales Avanzados (CIMAV, S.C.), Unidad Monterrey, Alianza Norte 202, 66600 Apodaca, Nuevo Leon, Mexico
$^5$ Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), CIBER en Biotecnologia, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18–26, 08034, Barcelona, Spain

Address correspondence to: tiseanuc@yahoo.com

Electronic Supplementary Information

I. $\textit{In situ}$ XRD patterns measured in the temperature range of 50 - 1000 °C.
II. HRTEM analysis of Eu$^{3+}$ - CeO$_2$ - ZrO$_2$ calcined at 750 °C (CZE- 750)
III. Luminescence properties of Eu$^{3+}$ - CeO$_2$ - ZrO$_2$ calcined at 750 °C (CZE- 750)
IV. HRTEM analysis of Eu$^{3+}$ - CeO$_2$ - ZrO$_2$ calcined at 1000 °C (CZE- 1000)
V. Raman spectra of Eu$^{3+}$ - CeO$_2$ - ZrO$_2$ calcined at 1000 °C (CZE- 1000)
VI. Luminescence properties of Eu$^{3+}$ - CeO$_2$ - ZrO$_2$ - 1000
1. **In situ** XRD patterns and Raman spectra measured in the temperature range of 50 - 1000 °C and 50 - 550 °C, respectively.

The **in situ** X-ray diffraction (XRD) patterns (Figure S1, temperature range T= 50-1000 °C) show three main reflections (111), (200) and (220) characteristic of CeO₂ cubic phase with fluorite structure. The lines gain intensity with increasing calcination temperature whereas the widths are narrowed as a result of better crystallization and crystallite size increase. No phase transformation is visible.

![In situ XRD patterns](image)

**Figure S1.** In situ XRD patterns of Eu⁺³ doped CeO₂- ZrO₂.
II. HRTEM analysis of Eu$^{3+}$ - CeO$_2$- ZrO$_2$ calcined at 750 °C (CZE-750)

![HRTEM images](image)

**Figure S2.** HRTEM images and their corresponding FFT analysis of CZE-750. d-spacings: (a) and (b) 3.1 Å and 1.55 Å (consistent with hkl 311 and 444 of cubic Ce$_2$Zr$_2$O$_7$, card number 00-052-1104); (c) 3.1 Å, 2.7 Å, 1.88 Å, 1.58 Å, and 1.55 Å (consistent with hkl 111, 200, 220, 311 and 222 of cubic Ce$_{0.6}$Zr$_{0.4}$O$_2$, card number 00-038-1439)); (d) 3.1 and 3.2 Å (consistent with hkl 311 of cubic Ce$_2$Zr$_2$O$_7$, card number 00-052-1104)

III. Luminescence properties of Eu$^{3+}$ - CeO$_2$- ZrO$_2$ calcined at 750 °C (CZE-750)

![Luminescence spectra](image)

**Figure S3.** Temporal evolution of the peak normalized emission spectra of Eu$^{3+}$ - CeO$_2$- ZrO$_2$- 750. The spectra evidence for the presence of a broad, surface type emission which is quenched at delays greater than 500 µs.
Figure S4. Dependency of the asymmetry ratio of Eu$^{3+}$ doped CeO$_2$-ZrO$_2$ – 750 on the excitation wavelength. Inset shows the dependency of the emission peak at 590 nm and broadness (FWHM corresponding to 590 nm emission) on the excitation wavelength. The FWHM varies from ~2.8 nm (excitation wavelength at 340 nm) to ~4.3 nm (excitation wavelength at 465.6 nm).

Figure S5. Figure S7. (a) Comparison between high resolution emission spectra around 590 nm of Eu$^{3+}$ doped CeO$_2$-ZrO$_2$ and ZrO$_2$ calcined at 750 °C.
IV. HRTEM analysis of Eu\(^{3+}\) - CeO\(_2\)- ZrO\(_2\) calcined at 1000 °C (CZE-1000)

Figure S6. HRTEM images and their corresponding FFT analysis of CZE-1000. d-spacings (d(Å)): (a) 3.08 Å, 1.9 Å, 1.6 Å, and 1.55 Å (consistent with hkl 111, 220, 311 and 222 of cubic Zr\(_{0.4}\)Ce\(_{0.6}\)O\(_2\), card number 00-038-1439); (b) 3.15 Å (consistent with hkl 311 of cubic Ce\(_2\)Zr\(_2\)O\(_7\), card number 00-052-1104); c) 1.24 Å, 1.22 Å, 1.61 Å, 1.83 Å, 0.93 Å and 0.81 Å, (consistent with hkl 104, 213, 103, 200, 224 and 420 of tetragonal Ce\(_{0.5}\)Zr\(_{0.5}\)O\(_2\), card number 00-055-0997). (d) 1.62 Å, 1.11 Å and 1.91 Å (consistent with hkl 103, 204, and 112 of tetragonal Ce\(_{0.5}\)Zr\(_{0.5}\)O\(_2\), card number 00-055-0997); (e) 2.99 Å and 2.93 Å (consistent with hkl 101 of tetragonal Zr\(_{0.5}\)Ce\(_{0.5}\)O\(_2\), card number 00-038-1436);
V. Raman spectra of Eu$^{3+}$ - CeO$_2$ - ZrO$_2$ calcined at 1000 °C (CZE - 1000)

Figure S7. (a) Raman spectra corresponding to different laser spot positions within Eu$^{3+}$ - CeO$_2$ - ZrO$_2$ calcined at 1000 °C; (b) Raman spectra of CeO$_2$ - ZrO$_2$ calcined at 1000 °C measured with at three laser excitation wavelengths of 488, 514 and 633 nm; (c) Dr-UV/Vis spectrum Eu$^{3+}$ - CeO$_2$ - ZrO$_2$ calcined at 1000 °C.

VI. Luminescence properties of Eu$^{3+}$ - CeO$_2$ - ZrO$_2$ - 1000

Figure S8. Temporal evolution of the peak normalized emission spectra of Eu$^{3+}$ - Ce- enriched CeO$_2$ - ZrO$_2$ - 1000 under excitation at 340 nm.
Figure S9 (a, b) Comparison between delayed emission spectra of Eu$^{3+}$ doped CeO$_2$- ZrO$_2$ and CeO$_2$ calcined at 1000 °C) under excitation at 335. The fingerprint emission of Eu$^{3+}$ in cubic sites of CeO$_2$ is obtained by use of a delay set at 10 ms (spectrum with blue line) and gate width of 1 ms. The characteristic, shorter-lived emission of Eu$^{3+}$ center in CeO$_2$ (spectrum with grey lines) is obtained by use of a delay set at 0.1 ms (spectrum with blue line) and gate width of 0.3 ms. The emission spectrum displays typical emission lines around 611 and 632 nm which are no longer observed with Eu$^{3+}$- CeO$_2$- ZrO$_2$- 1000 (spectrum with green line).

Figure S10. Dependency of the asymmetry ratio of Eu$^{3+}$ doped CeO$_2$- ZrO$_2$ – 1000 on the excitation wavelength. Inset shows the dependency of the emission peak at 590 nm and broadness (FWHM corresponding to 590 nm emission) on the excitation wavelength. The FWHM varies from ~ 1.8 nm (excitation wavelength at 340 nm) to ~ 3.5 nm (excitation wavelength at 465.6 nm).
Figure S11. Temporal evolution of the peak normalized emission spectra of Eu$^{3+}$ - CeO$_x$ - ZrO$_2$ - 1000 under excitation at two different wavelengths which shows the strong emission superposition from Eu$^{3+}$ located in slightly different tetragonal like oxygen environments.