Nano-inclusions: a novel approach to tune the thermal conductivity of the In$_2$O$_3$

Wei Xu,*a Yong Liu,*b Bo Chen,b Da-Bo Liuc, Yuan-Hua Lin,d and Augusto Marcellie,f

*aBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China Fax: +86-10-88235294; Tel: +86-10-88235156; E-mail: xuw@mail.ihep.ac.cn

bLaboratory of Structural Steel, Functional Materials and Heat Treatment Processing Technology, Beijing Institute of Aeronautical Materials, Beijing 100095, P. R. China. Tel: 0086-10-62497591; E-mail: liuy431@gmail.com

cState Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R. China

dINFN – Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Rome, Italy

eNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P.R. China

Figure.S1

Figure.S1 XRD patterns of In$_2$O$_3$, In$_{1.98}$Zn$_{0.02}$O$_3$ e In$_{1.96}$Zn$_{0.04}$O$_3$. Data have been indexed using the card JCPDS #06-0416. The ZnO contribution is not detectable in these XRD spectra.