V. SUPPLEMENTARY MATERIAL
TABLE VI: Energy levels (cm$^{-1}$) of the $4f$ configuration of Ce$^{3+}$ in 21 selected garnets referred to the $4f_1 1\Gamma_5$ ground state, as calculated for the (CeO$_8$)$^{13-}$ clusters embedded in a common cubic confinement potential.

<table>
<thead>
<tr>
<th>Garnet</th>
<th>$4f_2$</th>
<th>$4f_3$</th>
<th>$4f_4$</th>
<th>$4f_5$</th>
<th>$4f_6$</th>
<th>$4f_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu$_2$CaMg$_2$Si3O${12}$</td>
<td>378</td>
<td>1068</td>
<td>2284</td>
<td>2527</td>
<td>2751</td>
<td>5879</td>
</tr>
<tr>
<td>Pyrope</td>
<td>279</td>
<td>1029</td>
<td>2270</td>
<td>2438</td>
<td>2639</td>
<td>6063</td>
</tr>
<tr>
<td>Almandine</td>
<td>348</td>
<td>1079</td>
<td>2290</td>
<td>2491</td>
<td>2725</td>
<td>6003</td>
</tr>
<tr>
<td>Spessartine</td>
<td>401</td>
<td>1120</td>
<td>2306</td>
<td>2526</td>
<td>2804</td>
<td>5920</td>
</tr>
<tr>
<td>Grossular</td>
<td>486</td>
<td>1179</td>
<td>2334</td>
<td>2560</td>
<td>2968</td>
<td>5691</td>
</tr>
<tr>
<td>Andradite</td>
<td>498</td>
<td>1205</td>
<td>2327</td>
<td>2558</td>
<td>3029</td>
<td>5678</td>
</tr>
<tr>
<td>Ca$_3$Sc$_2$Si3O${12}$</td>
<td>564</td>
<td>1288</td>
<td>2331</td>
<td>2614</td>
<td>3135</td>
<td>5701</td>
</tr>
<tr>
<td>A$_3$B$_2$Si3O${12}$ garnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LuAG</td>
<td>82</td>
<td>863</td>
<td>2191</td>
<td>2286</td>
<td>2500</td>
<td>5788</td>
</tr>
<tr>
<td>YbAG</td>
<td>93</td>
<td>870</td>
<td>2212</td>
<td>2287</td>
<td>2508</td>
<td>5744</td>
</tr>
<tr>
<td>ErAG</td>
<td>127</td>
<td>876</td>
<td>2266</td>
<td>2293</td>
<td>2519</td>
<td>5637</td>
</tr>
<tr>
<td>YAG</td>
<td>144</td>
<td>899</td>
<td>2284</td>
<td>2301</td>
<td>2537</td>
<td>5654</td>
</tr>
<tr>
<td>GdAG</td>
<td>144</td>
<td>867</td>
<td>2290</td>
<td>2309</td>
<td>2517</td>
<td>5539</td>
</tr>
<tr>
<td>A$_3$Al5O${12}$ garnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LuGG</td>
<td>331</td>
<td>1043</td>
<td>2123</td>
<td>2544</td>
<td>2734</td>
<td>5920</td>
</tr>
<tr>
<td>YbGG</td>
<td>233</td>
<td>1000</td>
<td>2142</td>
<td>2448</td>
<td>2679</td>
<td>5849</td>
</tr>
<tr>
<td>YGG</td>
<td>204</td>
<td>919</td>
<td>2159</td>
<td>2434</td>
<td>2601</td>
<td>5648</td>
</tr>
<tr>
<td>HoGG</td>
<td>193</td>
<td>916</td>
<td>2160</td>
<td>2422</td>
<td>2596</td>
<td>5657</td>
</tr>
<tr>
<td>DyGG</td>
<td>178</td>
<td>895</td>
<td>2165</td>
<td>2410</td>
<td>2575</td>
<td>5615</td>
</tr>
<tr>
<td>TbGG</td>
<td>169</td>
<td>873</td>
<td>2171</td>
<td>2406</td>
<td>2555</td>
<td>5559</td>
</tr>
<tr>
<td>GdGG</td>
<td>137</td>
<td>841</td>
<td>2186</td>
<td>2374</td>
<td>2522</td>
<td>5489</td>
</tr>
<tr>
<td>SmGG</td>
<td>126</td>
<td>840</td>
<td>2209</td>
<td>2356</td>
<td>2523</td>
<td>5421</td>
</tr>
<tr>
<td>NdGG</td>
<td>118</td>
<td>818</td>
<td>2235</td>
<td>2342</td>
<td>2502</td>
<td>5337</td>
</tr>
</tbody>
</table>
TABLE VII: Energy levels (cm$^{-1}$) of the 4f configuration of Ce$^{3+}$ in 21 selected garnets referred to the 4f_1 1Γ_5 ground state, as calculated for the (CeO$_8$)$_{13}^-$ clusters embedded in the embedding potentials of the undistorted garnets. Available experimental data are shown in parentheses.

<table>
<thead>
<tr>
<th>Garnet</th>
<th>4f_2 2Γ_5</th>
<th>4f_3 3Γ_5</th>
<th>4f_4 4Γ_5</th>
<th>4f_5 5Γ_5</th>
<th>4f_6 6Γ_5</th>
<th>4f_7 7Γ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu$_2$CaMg$_2$Si3O${12}$</td>
<td>413</td>
<td>744</td>
<td>2302</td>
<td>2433</td>
<td>2738</td>
<td>4391</td>
</tr>
<tr>
<td>Pyrope</td>
<td>419</td>
<td>837</td>
<td>2166</td>
<td>2613</td>
<td>2662</td>
<td>5002</td>
</tr>
<tr>
<td>Almandine</td>
<td>330</td>
<td>760</td>
<td>2192</td>
<td>2534</td>
<td>2560</td>
<td>4782</td>
</tr>
<tr>
<td>Spessartine</td>
<td>260</td>
<td>692</td>
<td>2220</td>
<td>2440</td>
<td>2513</td>
<td>4574</td>
</tr>
<tr>
<td>Grossular</td>
<td>319</td>
<td>644</td>
<td>2325</td>
<td>2364</td>
<td>2597</td>
<td>4244</td>
</tr>
<tr>
<td>Andradite</td>
<td>383</td>
<td>702</td>
<td>2310</td>
<td>2404</td>
<td>2719</td>
<td>4227</td>
</tr>
<tr>
<td>Ca$_3$Sc$_2$Si3O${12}$</td>
<td>440</td>
<td>785</td>
<td>2282</td>
<td>2457</td>
<td>2841</td>
<td>4199</td>
</tr>
<tr>
<td>Lu$_2$B$_2$Si3O${12}$</td>
<td>269</td>
<td>809</td>
<td>2246</td>
<td>2362</td>
<td>2634</td>
<td>4710</td>
</tr>
<tr>
<td>Yb$_2$B$_2$Si3O${12}$</td>
<td>267</td>
<td>790</td>
<td>2264</td>
<td>2346</td>
<td>2625</td>
<td>4643</td>
</tr>
<tr>
<td>Er$_2$B$_2$Si3O${12}$</td>
<td>293</td>
<td>764</td>
<td>2270</td>
<td>2377</td>
<td>2624</td>
<td>4511</td>
</tr>
<tr>
<td>YAG</td>
<td>300</td>
<td>754</td>
<td>2266</td>
<td>2387</td>
<td>2615</td>
<td>4508</td>
</tr>
<tr>
<td>Gd$_2$B$_2$Si3O${12}$</td>
<td>323</td>
<td>748</td>
<td>2268</td>
<td>2421</td>
<td>2634</td>
<td>4394</td>
</tr>
<tr>
<td>Lu$_3$Al5O${12}$</td>
<td>547</td>
<td>1068</td>
<td>2151</td>
<td>2759</td>
<td>2889</td>
<td>4798</td>
</tr>
<tr>
<td>Yb$_3$Al5O${12}$</td>
<td>448</td>
<td>972</td>
<td>2156</td>
<td>2654</td>
<td>2794</td>
<td>4691</td>
</tr>
<tr>
<td>YAG</td>
<td>347</td>
<td>880</td>
<td>2188</td>
<td>2545</td>
<td>2722</td>
<td>4478</td>
</tr>
<tr>
<td>Ho$_3$Al5O${12}$</td>
<td>344</td>
<td>878</td>
<td>2187</td>
<td>2543</td>
<td>2719</td>
<td>4491</td>
</tr>
<tr>
<td>Dy$_3$Al5O${12}$</td>
<td>325</td>
<td>859</td>
<td>2194</td>
<td>2521</td>
<td>2706</td>
<td>4442</td>
</tr>
<tr>
<td>Tb$_3$Al5O${12}$</td>
<td>300</td>
<td>833</td>
<td>2206</td>
<td>2493</td>
<td>2686</td>
<td>4386</td>
</tr>
<tr>
<td>Gd$_3$Al5O${12}$</td>
<td>268</td>
<td>792</td>
<td>2222</td>
<td>2451</td>
<td>2655</td>
<td>4296</td>
</tr>
</tbody>
</table>

A$_3$Ga$_5$O$_{12}$ garnets

<table>
<thead>
<tr>
<th>Garnet</th>
<th>4f_2 2Γ_5</th>
<th>4f_3 3Γ_5</th>
<th>4f_4 4Γ_5</th>
<th>4f_5 5Γ_5</th>
<th>4f_6 6Γ_5</th>
<th>4f_7 7Γ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu$_3$Ga5O${12}$</td>
<td>547</td>
<td>1068</td>
<td>2151</td>
<td>2759</td>
<td>2889</td>
<td>4798</td>
</tr>
<tr>
<td>Yb$_3$Ga5O${12}$</td>
<td>448</td>
<td>972</td>
<td>2156</td>
<td>2654</td>
<td>2794</td>
<td>4691</td>
</tr>
<tr>
<td>YAG</td>
<td>347</td>
<td>880</td>
<td>2188</td>
<td>2545</td>
<td>2722</td>
<td>4478</td>
</tr>
<tr>
<td>Ho$_3$Ga5O${12}$</td>
<td>344</td>
<td>878</td>
<td>2187</td>
<td>2543</td>
<td>2719</td>
<td>4491</td>
</tr>
<tr>
<td>Dy$_3$Ga5O${12}$</td>
<td>325</td>
<td>859</td>
<td>2194</td>
<td>2521</td>
<td>2706</td>
<td>4442</td>
</tr>
<tr>
<td>Tb$_3$Ga5O${12}$</td>
<td>300</td>
<td>833</td>
<td>2206</td>
<td>2493</td>
<td>2686</td>
<td>4386</td>
</tr>
<tr>
<td>Gd$_3$Ga5O${12}$</td>
<td>268</td>
<td>792</td>
<td>2222</td>
<td>2451</td>
<td>2655</td>
<td>4296</td>
</tr>
</tbody>
</table>

A$_3$Sc$_5$O$_{12}$ garnets

<table>
<thead>
<tr>
<th>Garnet</th>
<th>4f_2 2Γ_5</th>
<th>4f_3 3Γ_5</th>
<th>4f_4 4Γ_5</th>
<th>4f_5 5Γ_5</th>
<th>4f_6 6Γ_5</th>
<th>4f_7 7Γ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu$_3$Sc5O${12}$</td>
<td>547</td>
<td>1068</td>
<td>2151</td>
<td>2759</td>
<td>2889</td>
<td>4798</td>
</tr>
<tr>
<td>Yb$_3$Sc5O${12}$</td>
<td>448</td>
<td>972</td>
<td>2156</td>
<td>2654</td>
<td>2794</td>
<td>4691</td>
</tr>
<tr>
<td>YAG</td>
<td>347</td>
<td>880</td>
<td>2188</td>
<td>2545</td>
<td>2722</td>
<td>4478</td>
</tr>
<tr>
<td>Ho$_3$Sc5O${12}$</td>
<td>344</td>
<td>878</td>
<td>2187</td>
<td>2543</td>
<td>2719</td>
<td>4491</td>
</tr>
<tr>
<td>Dy$_3$Sc5O${12}$</td>
<td>325</td>
<td>859</td>
<td>2194</td>
<td>2521</td>
<td>2706</td>
<td>4442</td>
</tr>
<tr>
<td>Tb$_3$Sc5O${12}$</td>
<td>300</td>
<td>833</td>
<td>2206</td>
<td>2493</td>
<td>2686</td>
<td>4386</td>
</tr>
<tr>
<td>Gd$_3$Sc5O${12}$</td>
<td>268</td>
<td>792</td>
<td>2222</td>
<td>2451</td>
<td>2655</td>
<td>4296</td>
</tr>
</tbody>
</table>

aReference 46.
TABLE VIII: Unrelaxed host effect (cm$^{-1}$) on the energy levels of the $4f$ configuration of Ce$^{3+}$ in 21 selected garnets referred to the $4f_1 1\Gamma_5$ ground state.

<table>
<thead>
<tr>
<th>Garnet</th>
<th>$4f_2 2\Gamma_5$</th>
<th>$4f_3 3\Gamma_5$</th>
<th>$4f_4 4\Gamma_5$</th>
<th>$4f_5 5\Gamma_5$</th>
<th>$4f_6 6\Gamma_5$</th>
<th>$4f_7 7\Gamma_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Lu$_2$CaMg$_2$Si3O${12}$</td>
<td>35</td>
<td>-324</td>
<td>18</td>
<td>-94</td>
<td>-13</td>
<td>-1488</td>
</tr>
<tr>
<td>2 Pyrope</td>
<td>140</td>
<td>-192</td>
<td>-104</td>
<td>175</td>
<td>23</td>
<td>-1061</td>
</tr>
<tr>
<td>3 Almandine</td>
<td>-19</td>
<td>-320</td>
<td>-98</td>
<td>43</td>
<td>-16</td>
<td>-1221</td>
</tr>
<tr>
<td>4 Spessartine</td>
<td>-141</td>
<td>-427</td>
<td>-86</td>
<td>-86</td>
<td>-291</td>
<td>-1346</td>
</tr>
<tr>
<td>5 Grossular</td>
<td>-166</td>
<td>-535</td>
<td>-9</td>
<td>-196</td>
<td>-371</td>
<td>-1447</td>
</tr>
<tr>
<td>6 Andradite</td>
<td>-115</td>
<td>-503</td>
<td>-17</td>
<td>-154</td>
<td>-311</td>
<td>-1450</td>
</tr>
<tr>
<td>7 Ca$_3$Sc$_2$Si3O${12}$</td>
<td>-124</td>
<td>-504</td>
<td>-49</td>
<td>-157</td>
<td>-294</td>
<td>-1503</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 LuAG</td>
<td>187</td>
<td>-54</td>
<td>56</td>
<td>75</td>
<td>134</td>
<td>-1078</td>
</tr>
<tr>
<td>9 YbAG</td>
<td>174</td>
<td>-80</td>
<td>52</td>
<td>59</td>
<td>116</td>
<td>-1101</td>
</tr>
<tr>
<td>10 ErAG</td>
<td>166</td>
<td>-112</td>
<td>4</td>
<td>83</td>
<td>105</td>
<td>-1126</td>
</tr>
<tr>
<td>11 YAG</td>
<td>156</td>
<td>-144</td>
<td>-18</td>
<td>86</td>
<td>78</td>
<td>-1147</td>
</tr>
<tr>
<td>12 GdAG</td>
<td>179</td>
<td>-119</td>
<td>-21</td>
<td>111</td>
<td>117</td>
<td>-1144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 LuGG</td>
<td>216</td>
<td>25</td>
<td>28</td>
<td>215</td>
<td>155</td>
<td>-1122</td>
</tr>
<tr>
<td>14 YbGG</td>
<td>215</td>
<td>-28</td>
<td>14</td>
<td>207</td>
<td>116</td>
<td>-1158</td>
</tr>
<tr>
<td>15 YGG</td>
<td>142</td>
<td>-40</td>
<td>29</td>
<td>111</td>
<td>121</td>
<td>-1170</td>
</tr>
<tr>
<td>16 HoGG</td>
<td>151</td>
<td>-38</td>
<td>27</td>
<td>120</td>
<td>123</td>
<td>-1166</td>
</tr>
<tr>
<td>17 DyGG</td>
<td>147</td>
<td>-37</td>
<td>29</td>
<td>111</td>
<td>130</td>
<td>-1173</td>
</tr>
<tr>
<td>18 TbGG</td>
<td>131</td>
<td>-40</td>
<td>35</td>
<td>87</td>
<td>131</td>
<td>-1173</td>
</tr>
<tr>
<td>19 GdGG</td>
<td>131</td>
<td>-49</td>
<td>36</td>
<td>77</td>
<td>133</td>
<td>-1193</td>
</tr>
<tr>
<td>20 SmGG</td>
<td>109</td>
<td>-94</td>
<td>29</td>
<td>52</td>
<td>98</td>
<td>-1229</td>
</tr>
<tr>
<td>21 NdGG</td>
<td>104</td>
<td>-108</td>
<td>32</td>
<td>35</td>
<td>97</td>
<td>-1239</td>
</tr>
</tbody>
</table>
TABLE IX: Energy levels (cm\(^{-1}\)) of the 5\(d\) configuration of Ce\(^{3+}\) in 21 selected garnets referred to the 4\(f_1\) 1\(\Gamma_5\) ground state, as calculated for the (CeO\(_8\))\(^{13-}\) clusters embedded in a common cubic confinement potential.

<table>
<thead>
<tr>
<th>Garnet</th>
<th>5(d_1) 8(\Gamma_5)</th>
<th>5(d_2) 9(\Gamma_5)</th>
<th>5(d_3) 10(\Gamma_5)</th>
<th>5(d_4) 11(\Gamma_5)</th>
<th>5(d_5) 12(\Gamma_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu(_2)CaMg(_2)Si(_3)O(_12) garnets</td>
<td>25236</td>
<td>29997</td>
<td>50986</td>
<td>55722</td>
<td>58664</td>
</tr>
<tr>
<td>Pyrope</td>
<td>22745</td>
<td>28568</td>
<td>53621</td>
<td>57241</td>
<td>62112</td>
</tr>
<tr>
<td>Almandine</td>
<td>23381</td>
<td>29271</td>
<td>52591</td>
<td>56896</td>
<td>61093</td>
</tr>
<tr>
<td>Spessartine</td>
<td>24101</td>
<td>29971</td>
<td>51555</td>
<td>56311</td>
<td>59944</td>
</tr>
<tr>
<td>Grossular</td>
<td>25666</td>
<td>31415</td>
<td>49381</td>
<td>54856</td>
<td>56797</td>
</tr>
<tr>
<td>Andradite</td>
<td>26214</td>
<td>31578</td>
<td>48631</td>
<td>54623</td>
<td>55831</td>
</tr>
<tr>
<td>Ca(_3)Sc(_2)Si(_3)O(_12) garnets</td>
<td>26577</td>
<td>31864</td>
<td>47324</td>
<td>54060</td>
<td>55230</td>
</tr>
<tr>
<td>LuAG</td>
<td>24913</td>
<td>28703</td>
<td>53752</td>
<td>54519</td>
<td>60223</td>
</tr>
<tr>
<td>YbAG</td>
<td>25144</td>
<td>28972</td>
<td>53407</td>
<td>54159</td>
<td>59868</td>
</tr>
<tr>
<td>ErAG</td>
<td>25711</td>
<td>29589</td>
<td>52616</td>
<td>53501</td>
<td>58751</td>
</tr>
<tr>
<td>YAG</td>
<td>25680</td>
<td>29676</td>
<td>52354</td>
<td>53556</td>
<td>58900</td>
</tr>
<tr>
<td>GdAG</td>
<td>26340</td>
<td>30079</td>
<td>51856</td>
<td>52921</td>
<td>57584</td>
</tr>
<tr>
<td>LuGG</td>
<td>25871</td>
<td>28446</td>
<td>51957</td>
<td>55223</td>
<td>60529</td>
</tr>
<tr>
<td>YbGG</td>
<td>25862</td>
<td>28712</td>
<td>52109</td>
<td>54184</td>
<td>60555</td>
</tr>
<tr>
<td>YGG</td>
<td>26636</td>
<td>29395</td>
<td>51597</td>
<td>53536</td>
<td>58468</td>
</tr>
<tr>
<td>HoGG</td>
<td>26607</td>
<td>29357</td>
<td>51691</td>
<td>53516</td>
<td>58589</td>
</tr>
<tr>
<td>DyGG</td>
<td>26741</td>
<td>29497</td>
<td>51621</td>
<td>53319</td>
<td>58177</td>
</tr>
<tr>
<td>TbGG</td>
<td>26981</td>
<td>29683</td>
<td>51427</td>
<td>53074</td>
<td>57567</td>
</tr>
<tr>
<td>GdGG</td>
<td>27174</td>
<td>29929</td>
<td>51299</td>
<td>52590</td>
<td>56963</td>
</tr>
<tr>
<td>SmGG</td>
<td>27414</td>
<td>30257</td>
<td>50875</td>
<td>51806</td>
<td>56496</td>
</tr>
<tr>
<td>NdGG</td>
<td>27723</td>
<td>30588</td>
<td>50458</td>
<td>51196</td>
<td>55568</td>
</tr>
</tbody>
</table>

A\(_3\)B\(_2\)Si\(_3\)O\(_12\) garnets

A\(_3\)Al\(_3\)O\(_12\) garnets

A\(_3\)Ga\(_5\)O\(_12\) garnets
TABLE X: Energy levels (cm$^{-1}$) of the 5d configuration of Ce$^{3+}$ in 21 selected garnets referred to the 4f_1 1Γ_5 ground state, as calculated for the (CeO$_8$)$_{13}^{-}$ clusters embedded in the embedding potentials of the undistorted garnets. Available experimental data are shown in parentheses.

<table>
<thead>
<tr>
<th>Garnet</th>
<th>5d_1 8Γ_5</th>
<th>5d_2 9Γ_5</th>
<th>5d_3 10Γ_5</th>
<th>5d_4 11Γ_5</th>
<th>5d_5 12Γ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu$_2$CaMg$_2$Si3O${12}$</td>
<td>21719</td>
<td>31112</td>
<td>49946</td>
<td>52451</td>
<td>54904</td>
</tr>
<tr>
<td>(21300)a</td>
<td>(32800)a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A$_3$B$_2$Si3O${12}$ garnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrope</td>
<td>22210</td>
<td>27952</td>
<td>52449</td>
<td>53309</td>
<td>58981</td>
</tr>
<tr>
<td>Almandine</td>
<td>22365</td>
<td>28626</td>
<td>51426</td>
<td>52392</td>
<td>57051</td>
</tr>
<tr>
<td>Spessartine</td>
<td>22710</td>
<td>29365</td>
<td>50405</td>
<td>51712</td>
<td>55932</td>
</tr>
<tr>
<td>Grossular</td>
<td>23873</td>
<td>31573</td>
<td>48378</td>
<td>51170</td>
<td>53217</td>
</tr>
<tr>
<td>Andradite</td>
<td>24092</td>
<td>31972</td>
<td>47693</td>
<td>51680</td>
<td>52861</td>
</tr>
<tr>
<td>Ca$_3$Sc$_2$Si3O${12}$</td>
<td>24367</td>
<td>32349</td>
<td>46374</td>
<td>51516</td>
<td>52591</td>
</tr>
<tr>
<td>(22200)b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A$_3$Al5O${12}$ garnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LuAG</td>
<td>22102</td>
<td>27807</td>
<td>50006</td>
<td>52423</td>
<td>54540</td>
</tr>
<tr>
<td>(22470)c</td>
<td>(29410)c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(21138)d</td>
<td>(28233)d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YbAG</td>
<td>22249</td>
<td>28199</td>
<td>49827</td>
<td>51966</td>
<td>54241</td>
</tr>
<tr>
<td>ErAG</td>
<td>22493</td>
<td>29052</td>
<td>49522</td>
<td>51114</td>
<td>53550</td>
</tr>
<tr>
<td>YAG</td>
<td>22523</td>
<td>29242</td>
<td>49673</td>
<td>50906</td>
<td>53835</td>
</tr>
<tr>
<td>(22000)e</td>
<td>(29400)e</td>
<td>(44000)e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20440)f</td>
<td>(28800)f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GdAG</td>
<td>23001</td>
<td>29789</td>
<td>49399</td>
<td>50540</td>
<td>53063</td>
</tr>
<tr>
<td>A$_3$Ga5O${12}$ garnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LuGG</td>
<td>24112</td>
<td>26367</td>
<td>47788</td>
<td>53183</td>
<td>54404</td>
</tr>
<tr>
<td>YbGG</td>
<td>24102</td>
<td>26852</td>
<td>47979</td>
<td>52367</td>
<td>54293</td>
</tr>
<tr>
<td>YGG</td>
<td>24446</td>
<td>27883</td>
<td>47786</td>
<td>51804</td>
<td>53308</td>
</tr>
<tr>
<td>(23800)e</td>
<td>(28100)e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HoGG</td>
<td>24416</td>
<td>27863</td>
<td>48023</td>
<td>51882</td>
<td>53519</td>
</tr>
<tr>
<td>DyGG</td>
<td>24497</td>
<td>28068</td>
<td>47926</td>
<td>51674</td>
<td>53149</td>
</tr>
<tr>
<td>TbGG</td>
<td>24627</td>
<td>28390</td>
<td>47975</td>
<td>51513</td>
<td>52969</td>
</tr>
<tr>
<td>GdGG</td>
<td>24773</td>
<td>28779</td>
<td>47872</td>
<td>51037</td>
<td>52421</td>
</tr>
<tr>
<td>(23500)g</td>
<td>(28700)g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SmGG</td>
<td>24977</td>
<td>29332</td>
<td>47690</td>
<td>50359</td>
<td>52105</td>
</tr>
<tr>
<td>NdGG</td>
<td>25145</td>
<td>29956</td>
<td>47656</td>
<td>49829</td>
<td>51643</td>
</tr>
</tbody>
</table>

aReference 9, excitation band maximum.
bReference 10, excitation band maximum.
cReference 54, excitation band maximum.
dReference 54, zero-phonon line.
eReference 1, excitation band maximum.
fReference 8, zero-phonon line.
gReference 46, excitation band maximum.
TABLE XI: Energy levels (cm\(^{-1}\)) of the 5\(d\) configuration of Ce\(^{3+}\) in 21 selected garnets referred to the 5\(d_1\) 8\(\Gamma_5\) state, as calculated for the (CeO\(_8\))\(^{13-}\) clusters embedded in the embedding potentials of the undistorted garnets. Available experimental data are shown in parentheses.

<table>
<thead>
<tr>
<th>Garnet</th>
<th>5(d_1) 8(\Gamma_5)</th>
<th>5(d_2) 9(\Gamma_5)</th>
<th>5(d_3) 10(\Gamma_5)</th>
<th>5(d_4) 11(\Gamma_5)</th>
<th>5(d_5) 12(\Gamma_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu(_2)CaMg(_2)Si(_3)O(_12)</td>
<td>0</td>
<td>9393</td>
<td>28227</td>
<td>30732</td>
<td>33185</td>
</tr>
<tr>
<td>A(_3)B(_2)Si(_3)O(_12) garnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrope</td>
<td>0</td>
<td>5742</td>
<td>30239</td>
<td>31098</td>
<td>36771</td>
</tr>
<tr>
<td>Almandine</td>
<td>0</td>
<td>6261</td>
<td>29061</td>
<td>30027</td>
<td>34685</td>
</tr>
<tr>
<td>Spessartine</td>
<td>0</td>
<td>6655</td>
<td>27695</td>
<td>29002</td>
<td>33223</td>
</tr>
<tr>
<td>Grossular</td>
<td>0</td>
<td>7700</td>
<td>24505</td>
<td>27297</td>
<td>29344</td>
</tr>
<tr>
<td>Andradite</td>
<td>0</td>
<td>7880</td>
<td>23602</td>
<td>27588</td>
<td>28770</td>
</tr>
<tr>
<td>Ca(_3)Sc(_2)Si(_3)O(_12)</td>
<td>0</td>
<td>7982</td>
<td>22007</td>
<td>27149</td>
<td>28224</td>
</tr>
<tr>
<td>A(_3)Al(_5)O(_12) garnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LuAG</td>
<td>0</td>
<td>5704</td>
<td>27904</td>
<td>30321</td>
<td>32438</td>
</tr>
<tr>
<td>YbAG</td>
<td>0</td>
<td>5950</td>
<td>27578</td>
<td>29716</td>
<td>31991</td>
</tr>
<tr>
<td>ErAG</td>
<td>0</td>
<td>6559</td>
<td>27029</td>
<td>28621</td>
<td>31057</td>
</tr>
<tr>
<td>YAG</td>
<td>0</td>
<td>6718</td>
<td>27150</td>
<td>28383</td>
<td>31312</td>
</tr>
<tr>
<td>YAG</td>
<td>0</td>
<td>6788</td>
<td>26398</td>
<td>27539</td>
<td>30062</td>
</tr>
<tr>
<td>A(_3)Ga(_5)O(_12) garnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LuGG</td>
<td>0</td>
<td>2256</td>
<td>23676</td>
<td>29071</td>
<td>30292</td>
</tr>
<tr>
<td>YbGG</td>
<td>0</td>
<td>2750</td>
<td>23877</td>
<td>28265</td>
<td>30192</td>
</tr>
<tr>
<td>YGG</td>
<td>0</td>
<td>3437</td>
<td>23340</td>
<td>27358</td>
<td>28862</td>
</tr>
<tr>
<td>HoGG</td>
<td>0</td>
<td>3447</td>
<td>23608</td>
<td>27467</td>
<td>29103</td>
</tr>
<tr>
<td>DyGG</td>
<td>0</td>
<td>3571</td>
<td>23429</td>
<td>27177</td>
<td>28653</td>
</tr>
<tr>
<td>TbGG</td>
<td>0</td>
<td>3763</td>
<td>23348</td>
<td>26886</td>
<td>28342</td>
</tr>
<tr>
<td>GdGG</td>
<td>0</td>
<td>4007</td>
<td>23099</td>
<td>26264</td>
<td>27648</td>
</tr>
<tr>
<td>GdGG</td>
<td>0</td>
<td>4356</td>
<td>22713</td>
<td>25383</td>
<td>27129</td>
</tr>
<tr>
<td>SmGG</td>
<td>0</td>
<td>4811</td>
<td>22511</td>
<td>24685</td>
<td>26498</td>
</tr>
</tbody>
</table>

\(^a\)Reference 9, excitation band maximum.
\(^b\)Reference 54, excitation band maximum.
\(^c\)Reference 54, zero-phonon line.
\(^d\)Reference 1, excitation band maximum.
\(^e\)Reference 8, zero-phonon line.
\(^f\)Reference 46, excitation band maximum.
TABLE XII: Unrelaxed host effect (cm\(^{-1}\)) on the energy levels of the 5d configuration of Ce\(^{3+}\) in 21 selected garnets referred to the 4f\(_1\) 1\(\Gamma_5\) ground state.

<table>
<thead>
<tr>
<th>Garnet</th>
<th>5d(_1) 8(\Gamma_5)</th>
<th>5d(_2) 9(\Gamma_5)</th>
<th>5d(_3) 10(\Gamma_5)</th>
<th>5d(_4) 11(\Gamma_5)</th>
<th>5d(_5) 12(\Gamma_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu(_2)CaMg(_2)Si(_3)O(_12)</td>
<td>-3517</td>
<td>1115</td>
<td>-1040</td>
<td>-3271</td>
<td>-3760</td>
</tr>
<tr>
<td>A(_3)B(_2)(_2)Si(_3)O(_12) garnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrope</td>
<td>-534</td>
<td>-616</td>
<td>-1173</td>
<td>-3032</td>
<td>-3131</td>
</tr>
<tr>
<td>Almandine</td>
<td>-1016</td>
<td>-645</td>
<td>-1164</td>
<td>-4504</td>
<td>-4042</td>
</tr>
<tr>
<td>Spessartine</td>
<td>-1392</td>
<td>-607</td>
<td>-1151</td>
<td>-4599</td>
<td>-4012</td>
</tr>
<tr>
<td>Grossular</td>
<td>-1792</td>
<td>158</td>
<td>-1003</td>
<td>-3686</td>
<td>-3579</td>
</tr>
<tr>
<td>Andradite</td>
<td>-2122</td>
<td>395</td>
<td>-938</td>
<td>-2944</td>
<td>-2970</td>
</tr>
<tr>
<td>Ca(_3)Sc(_2)Si(_3)O(_12)</td>
<td>-2210</td>
<td>485</td>
<td>-950</td>
<td>-2544</td>
<td>-2639</td>
</tr>
<tr>
<td>A(_3)Al(_5)O(_12) garnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LuAG</td>
<td>-2811</td>
<td>-896</td>
<td>-3746</td>
<td>-2096</td>
<td>-5682</td>
</tr>
<tr>
<td>YbAG</td>
<td>-2895</td>
<td>-773</td>
<td>-3579</td>
<td>-2193</td>
<td>-5627</td>
</tr>
<tr>
<td>ErAG</td>
<td>-3218</td>
<td>-537</td>
<td>-3093</td>
<td>-2387</td>
<td>-5201</td>
</tr>
<tr>
<td>YAG</td>
<td>-3157</td>
<td>-435</td>
<td>-2681</td>
<td>-2650</td>
<td>-5065</td>
</tr>
<tr>
<td>A(_3)Ga(_5)O(_12) garnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GdAG</td>
<td>-3339</td>
<td>-290</td>
<td>-2457</td>
<td>-2380</td>
<td>-4521</td>
</tr>
<tr>
<td>LuGG</td>
<td>-1759</td>
<td>-2078</td>
<td>-4169</td>
<td>-2040</td>
<td>-6125</td>
</tr>
<tr>
<td>YbGG</td>
<td>-1760</td>
<td>-1861</td>
<td>-4130</td>
<td>-1817</td>
<td>-6262</td>
</tr>
<tr>
<td>GdGG</td>
<td>-2192</td>
<td>-1513</td>
<td>-3811</td>
<td>-1732</td>
<td>-5160</td>
</tr>
<tr>
<td>HoGG</td>
<td>-2192</td>
<td>-1494</td>
<td>-3668</td>
<td>-1634</td>
<td>-5070</td>
</tr>
<tr>
<td>DyGG</td>
<td>-2244</td>
<td>-1429</td>
<td>-3695</td>
<td>-1645</td>
<td>-5028</td>
</tr>
<tr>
<td>TbGG</td>
<td>-2354</td>
<td>-1292</td>
<td>-3452</td>
<td>-1560</td>
<td>-4597</td>
</tr>
<tr>
<td>ErGG</td>
<td>-2401</td>
<td>-1150</td>
<td>-3427</td>
<td>-1553</td>
<td>-4542</td>
</tr>
<tr>
<td>SmGG</td>
<td>-2437</td>
<td>-925</td>
<td>-3185</td>
<td>-1447</td>
<td>-4391</td>
</tr>
<tr>
<td>NdGG</td>
<td>-2578</td>
<td>-632</td>
<td>-2803</td>
<td>-1366</td>
<td>-3925</td>
</tr>
</tbody>
</table>
Supplementary material figure captions

FIG. 8: Centroid energy component of the $4f \rightarrow 5d$ transition, $\Delta E_{\text{centroid}}(fd)$ (Eq. 2), of Ce$^{3+}$ doped in 21 selected garnets. See Fig. 2 caption.

FIG. 9: Crystal field splitting component of the $4f_1 \rightarrow 5d_1$ transition, $\Delta E_{\text{LF}}(4f_1 \rightarrow 5d_1)$ (Eq. 3), of Ce$^{3+}$ doped in 21 selected garnets. See Fig. 2 caption.

FIG. 10: Energy levels of the $4f$ configuration (referred to the $4f_1 1\Gamma_5$ ground state) of Ce$^{3+}$ in 21 selected garnets, as calculated for the (CeO$_8$)$_{13}^-$ clusters embedded in a common cubic confinement potential. See Fig. 6 caption.

FIG. 11: Unrelaxed host effect on the energy levels of the $4f$ configuration (referred to the $4f_1 1\Gamma_5$ ground state) of Ce$^{3+}$ in 21 selected garnets. See Fig. 6 caption.

FIG. 12: Energy levels of the $5d$ configuration (referred to the $5d_1 8\Gamma_5$ level) of Ce$^{3+}$ in 21 selected garnets, as calculated for the (CeO$_8$)$_{13}^-$ clusters embedded in a common cubic confinement potential. See Fig. 7 caption.

FIG. 13: Unrelaxed host effect on the energy levels of the $5d$ configuration (referred to the $5d_1 8\Gamma_5$ level) of Ce$^{3+}$ in 21 selected garnets. See Fig. 7 caption.

FIG. 14: Energy levels of the $5d$ configuration (referred to the $4f_1 1\Gamma_5$ ground state) of Ce$^{3+}$ in 21 selected garnets, as calculated for the (CeO$_8$)$_{13}^-$ clusters embedded in the embedding potentials of the undistorted garnets. See Fig. 7 caption.
FIG. 15: Energy levels of the 5d configuration (referred to the 4f1 1Γ5 ground state) of Ce³⁺ in 21 selected garnets, as calculated for the (CeO₈)₁³⁻ clusters embedded in a common cubic confinement potential. See Fig. 7 caption.

FIG. 16: Unrelaxed host effect on the energy levels of the 5d configuration (referred to the 4f1 1Γ5 ground state) of Ce³⁺ in 21 selected garnets. See Fig. 7 caption.
Figure 8. Seijo and Barandiarán
Figure 9. Seijo and Barandiarán
Figure 10. Seijo and Barandiarán
Figure 11. Seijo and Barandiarán
Figure 12. Seijo and Barandiarán
Figure 13. Seijo and Barandiarán
Figure 14. Seijo and Barandiarán
Figure 15. Seijo and Barandiarán
Figure 16. Seijo and Barandiarán