Enhancement of PbS Quantum Dot-Sensitized Photocurrents by Plasmonic Gold Nanoparticles

Tokuhisa Kawawaki and Tetsu Tatsuma*

Institute of Industrial Science, The University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

Corresponding Author

*E-mail: tatsuma@iis.u-tokyo.ac.jp
As the TiO$_2$ thickness increases, extinction peaks due to interference of the ITO/TiO$_2$ film on a glass substrate redshifts (Fig. S1). We measured the TiO$_2$ thickness by scanning electron microscopy (SEM) and plotted the peak at 500-700 nm against the thickness (Fig. S2). On the basis of the calibration curve thus obtained, we evaluated the TiO$_2$ thickness of the samples used in the present work.

![Extinction spectra of the ITO/TiO$_2$ films on a glass substrate.](image)

Fig. S1 Extinction spectra of the ITO/TiO$_2$ films on a glass substrate.

![Peak wavelength in Figure S1 plotted as a function of the TiO$_2$ thickness measured by SEM.](image)

Fig. S2 Peak wavelength in Figure S1 plotted as a function of the TiO$_2$ thickness measured by SEM.