Supporting Information

Controlled Electrochemical Intercalation, Exfoliation and \textit{in situ} Nitrogen Doping of Graphite in Nitrate-Based Protic Ionic Liquids

Xunyu Lu and Chuan Zhao*

*School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia

*Corresponding author: chuan.zhao@unsw.edu.au

Experimental

Materials

Graphite rods were purchased from Goodfellow (99.997%, 3.0 mm diameter, UK) and Sigma-Aldrich (99.999%, 3.0 mm diameter, USA), respectively. Ethylammonium nitrate (EAN, 98%) was purchased from Io-li-tec (Germany) and used as received. All other chemicals were purchased from Sigma-Aldrich and used without further purification. Water used throughout this study was purified by a MilliQ water purifying system and has a resistance of 18.2 mΩ.

Electrochemical procedure

All electrochemical exfoliation experiments were carried out with a CHI 760 electrochemical workstation (CH Instrument, USA). The graphite rod was used as the working electrode, a Ag/AgCl and a Pt wire (or graphite rod) were used as the reference and counter electrode, respectively. The potential was held at 2.2 V vs. Ag/AgCl for 2 hours, and the precipitate prepared from this experiment was collected by filtration, and washed thoroughly with ethanol and water. The as-prepared nitrogen-doped graphene (N-graphene) was then dried at 40 °C overnight under vacuum.

Dried N-graphene (4 mg) was mixed with 1 ml 1:4 (v/v) ethanol and H₂O solution.
Then, 8 µL of 5 wt% Nafion (Sigma-Aldrich) solution was added into this mixture, and sonicated for more than 1h to form a homogeneous ink. Then, 3 µL and 6 µL of this ink was dropped casted on the surface of 3 mm diameter glassy carbon macrodisc electrode and 4 mm diameter glassy carbon rotating disk electrode, respectively, for further electrochemical characterization.

Potential reference conversion

In pure ionic liquids, a IUPAC recommended redox couple, ferrocene/ferrocenium (Fe\(^{0/+}\)), was used as the internal potential reference, and then converted to normal hydrogen electrode (NHE) reference using equation 1.\(^1\)

\[
E \text{ (vs. NHE)} = E \text{ (vs. } \text{Fe}^{0/+}) + 0.63 \text{ V}
\]

where \(E \text{ (vs. NHE)}\) is the potential referenced against NHE, while \(E \text{ (vs. } \text{Fe}^{0/+})\) is the potential referenced against Fe\(^{0/+}\). For ionic liquid/water mixture, a Ag/AgCl was used as the reference electrode, and the potential was converted to NHE reference by equation 2.

\[
E \text{ (vs. NHE)} = E \text{ (vs. Ag/AgCl)} + 0.197 \text{ V}
\]

where \(E \text{ (vs. Ag/AgCl)}\) is the potential obtained with a Ag/AgCl reference electrode.

Physical characterization

The as-prepared N-graphene was first dispersed in dimethylformide (DMF) to form a homogeneous solution. The solution was drop casted on the surface of indium tin oxide (ITO) coated glass then air-dried. The N-graphene coated ITO was then used as the sample for X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS) and Raman Spectra characterization. For Transmission Electron Microscopy (TEM), samples were prepared by drop casting the N-graphene solution on the surface of copper grid, then dried in air.

Calculation of number of electrons \((n)\) transfer in oxygen reduction reactions (ORR)

The electron transfer number \(n\) was calculated using the Koutecky-Levich (K-L) equation:\(^2\)

\[
\frac{1}{i} = \frac{1}{i_k} + \frac{1}{Bi^0.5}
\]

\(i\) is the kinetic limiting current, \(\omega\) is the rotating speed of the electrode, \(B\) is the slope
of K-L equation which can be determined by equation:

\[
B = 0.2 \ nF \left(D_{O_2} \right)^{2/3} \ \eta^{-1/6} \ \mathcal{C}_{O_2}
\]

(4)

where \(n \) is the number of electrons transferred, \(F \) is the Faraday constant (96485 C mol\(^{-1}\)), \(D_{O_2} \) is the oxygen diffusion coefficient in 0.1 M KOH (1.73 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}), \(\eta \) is the kinetic viscosity (0.01 cm\(^2\) s\(^{-1}\)), and \(\mathcal{C}_{O_2} \) is the bulk concentration of O\(_2\) in air saturated 0.1 M KOH solution (2.4 \times 10^{-7} \text{ mol cm}^{-3}).
Figure S1. Cyclic voltammogram obtained with a graphite rod working electrode in EAN/H$_2$O (9/1, v/v) mixture at a scan rate of 0.1 V/s.

Figure S2. Anodic potential limit of neat EAN and EAN/H$_2$O (9/1, v/v) mixture obtained at a graphite rod working electrode at a scan rate of 0.1 V/s.
Figure S3. (a) Top view photograph of the electrochemical cell after exfoliation of graphite in EAN/water (9:1 v/v) at 2.2 V for 2 h. (b) The Tyndall effect of as-prepared N-graphene re-dispersed in DMF. (c) SEM image and (d) HRTEM image of the as-prepared N-graphene showing large area, few layer graphene are formed.

Figure S4. (a) High resolution C1s XPS spectrum of N-graphene.
Figure S5. XPS spectra of N-graphene prepared from EAN/water mixture at different volume ratios.

Figure S6. (a) Photograph of a graphite exfoliation in 70% nitric acid solution after 5 min at an applied potential of 2.2 V, (b) TEM image of precipitate obtained from graphite rod exfoliation in 70% nitric acid.
Figure S7. (a) Cyclic voltammograms obtained with a graphite rod working electrode in EAN/H$_2$O (9/1, v/v) mixture at a scan rate of 0.1 V/s at the 1st, 50th, and 100th cycle, respectively. (b, c) TEM and HRTEM images of N-graphene prepared from cyclic voltammetry exfoliation. (d) XPS survey spectra of N-graphene prepared from cyclic voltammetry exfoliation. Inset in (d) shows the high resolution N 1s XPS spectra of N-graphene.

References: