Table S1:	Illustrative comparison of geometric current densities achieved by pure cultures
	in bioelectrochemical systems (BES) [§] .

Strain ^{Reference}	<i>j</i> /A m ^{-2†}	Strain ^{Reference}	<i>j</i> /A m ^{-2†}
Clostridium beijerinckii ¹	13.00 [‡]	Thermincola ferriacetica ^{2, MFC}	0.400
Clostridium butyricum ¹	13.00‡	Geobacter bremensis ³	0.300
Geobacter sulfurreducens ^{This work}	11.60	Pseudomonas aeruginosa ^{4, MFC}	0.264
Geobacter sulfurreducens ⁵	9.00	Geobacter metallireducens ⁶	0.256
Geoalkalibacter subterraneus ⁷	8.92 [§]	Natrialba magadii ^{8, MFC}	0.220
Geoalkalibacter subterraneus ⁹	8.45 [§]	Comamonas denitrificans ^{10, MFC}	0.200
Geobacter sulfurreducens ¹¹	8.40	Bacillus subtilis ^{12,MFC}	0.178
Geobacter sulfurreducens ¹¹	8.00	Saccharomyces cerevisiae ^{13, MFC}	0.160
Geoalkalibacter ferrihydriticus ¹⁴	8.30	Desulfuromonas acetoxidans ⁶	0.158
Geobacter sulfurreducens ¹¹	8.00	Escherichia coli ^{4, MFC}	0.147
<i>Thermincola ferriacetica</i> ¹⁵	8.00	Shewanella putrefaciens ¹⁶	0.120
Geoalkalibacter subterraneus ^{This work}	5.06	Citrobacter sp. XS-1 ^{17, MFC}	0.098
Geobacter sulfurreducens ¹⁸	5.00	Shewanella oneidensis ¹⁹	0.079
Geoalkalibacter subterraneus ⁹	4.50 [§]	Pseudomonas alcaliphila ^{20, MFC}	0.070
<i>Geobacter sulfurreducens</i> ²¹	3.40	Proteus hauseri ^{22, MFC}	0.065
Geoalkalibacter subterraneus ¹⁴	3.30	<i>Thermincola potens</i> ^{23, MFC}	0.064
Geobacter sulfurreducens ²⁴	3.15	Corynebacterium sp. MFC03 ^{25, MFC}	0.063
Gluconobacter oxydans ²⁶	2.61	Pseudomonas aeruginosa ²⁷	0.060
Proteus vulgaris ^{28, MFC}	1.23	<i>Klebsiella sp.</i> ME17 ^{29, MFC}	0.057
Geopsychrobacter electrodiphilus ³⁰	1.21	Geothrix fermentans ³¹	0.050
<i>Klebsiella pneumoniae</i> ^{32, MFC}	1.20	Pseudomonas aeruginosa ³³	0.036
Geobacter sulfurreducens ³⁴	1.00	Klebsiella pneumoniae ³⁵	0.032
Rhodopseudomonas palustris ^{36, MFC}	0.81	Rhodoferax ferrireducens ³⁷	0.031
Geobacter sulfurreducens ³⁸	0.75	Desulfobulbus propionicus ³⁹	0.028
Ochrobactrum anthropi ⁴⁰	0.70	Enterobacter aerogenes ³³	0.025
Geobacter sulfurreducens ²⁴	0.69	<i>Clostridium acetobutylicum</i> ^{41, MFC}	0.024
Haloferax volcani ^{8, MFC}	0.50	Enterobacter aerogenes ^{42, MFC}	0.010
Enterobacter cloacae ^{43, MFC}	0.49	Saccharomyces cerevisiae ⁴⁴	0.009
Desulfitobacterium hafniense ^{45, MFC}	0.46	Escherichia coli ^{8, MFC}	0.006
Shewanella oneidensis ⁴⁶	0.42	<i>Rhodopseudomonas palustris</i> ^{47, MFC}	>0.001

[†]Current densities from well defined surface area planar electrodes. Therefore, 3D-porous materials were not considered in this compilation; [‡]Combination of suspended fermentative bacteria and electrocatalytic anode materials as reported in⁴⁸; [§]Non pure culture studies showing *Geoalkalibacter* dominated electroactive biofilms derived from environmental samples included here due to the lack of information on pure culture studies on *Geoalkalibacter subterraneus*; ^{MFC}Non potentiostatic controlled microbial fuel cells studies included here for sake of completeness although they do not assure similar biological and environmental conditions for both electrodes⁴⁹. ARB able to produce significant current densities and thick (>40 µm) biofilms are highlighted in red.

Fig. S1 Exemplary chronoamperometric (CA) measurements of experimental replicates of electroactive biofilms grown on planar graphite electrodes (15 cm²) at an applied potential of +200 V vs. SCE (KCl 3.0 M). *Geoalkalibacter subterraneus* biofilms grown in (A-B) Starkey medium with 35 g/L NaCl and in (C-D) FRR medium with 17 g/L NaCl and for comparison (E-F) shows *Geobacter sulfurreducens* biofilms grown in DSMZ medium No. 826 (see Experimental section for details).

Fig. S2 Comparison of DET formal potentials (E_f) for bacteria capable of producing significant current densities and illustrating a sigmoidal shape during turnover conditions in CV measurements. Idea illustration based on⁵⁰.

Table S2:	Comparison of experimental parameters used in this study and by Badalamenti
	<i>et al.</i> ¹⁴ showing pure culture electroactive biofilms of <i>Glk. subterraneus</i> .

Parameter	This study		Badalamenti <i>et al</i> . ¹⁴
Current density during CA* in A/m ²	4.68 ± 0.54	4.57 ± 0.67	3.3
Applied potential in mV vs. SCE	+200	+200	-200
Temperature in °C	37	37	40
Salinity given as NaCl in g/L	35	17	17
pH value	7.0	7.0	7.0
BES architecture	Half-cell	Half-cell	Two-chamber
Coulombic efficiency in %	114 ± 14	110±1	55-119
Sodium acetate concentration in mM	10	10	20

*CA: chronoamperometry

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Fig. S3 A) Turnover cyclic voltammetry (CV) comparison of electroactive biofilms of *Geoalkalibacter subterraneus* (continuous line) and *Geobacter sulfurreducens* (dotted line) grown on graphite plate electrodes (15 cm²) and in B) their respective first derivative. Double head arrows on the top indicate potential windows for formal potentials $E_{f,1}$ and $E_{f,3}$.

Fig. S4 Comparison of substrate deprived non-turnover cyclic voltammetry of electroactive biofilms. A) *Geoalkalibacter subterraneus* and B) *Geobacter sulfurreducens* immersed in growth medium without electron donor or any other compound capable of being detected in CV. Description: substrate depleted medium was replenished for the respective medium for *Glk. subterraneus* and *Gb. sulfurreducens* strains after substrate consumption during the first CA cycle. These media lacked electron donor/acceptor, trace element solutions, vitamin solution, selenite-tungstate solution, resazurin, yeast extract or any other compound that could give a signal while performing CV. Vertical dashed column indicates common formal potential found for both bacteria possibly indicating a similar DET mechanism.

Fig. S5 Photographs of graphite working electrode before and after a visible reddish biofilm formation by *Geoalkalibacter subterraneus* (red color very likely caused by hemes⁵¹). A) Bare graphite electrode; B) Graphite electrode completely covered by the biofilm. In this photograph only the side of the graphite working electrode opposite to the Pt/Ir counter electrode is shown and C) The side of the graphite electrode facing the counter electrode showing completely biofilm coverage.

Table S3: PHLIP Analysis of mature electroactive biofilms.

Strain	Electrode coverage/ %	Thickness/ µm
Geoalkalibacter subterraneus	23 ± 7	76 ± 7
Geobacter sulfurreducens [†]	31 ± 16	46 ± 22
Graphite [‡]	5 ± 2	20 ± 1

[†]Positive biofilm control and [‡]Negative biofilm control

Fig. S6 Stack of metabolically active 1-µm slices of a *Glk. subterraneus* biofilm. Bar:120 µm.

Fig. S7 Exemplary Volocity[®] 3D reconstructions of CLSM slices of electroactive biofilms. A-B) *Geoalkalibacter subterraneus*, C-D) *Geobacter sulfurreducens* and E-F) Graphite electrode not potentiostatically controlled from Table S3 (1 unit = 1 little square edge = $37.51 \mu m$, the observed surface was thus $375 \mu m \times 375 \mu m$).

Figure S8: Exemplary confocal laser scanning microscopy of (A-B) *Geoalkalibacter subterraneus* and (C-D) *Geobacter sulfurreducens* biofilms grown on graphite plate electrodes potentiostatically controlled. E-F) Negative control electrode not potentiostatically controlled illustrating a lack of biofilm growth on the electrode surface. Maximum intensity projections: A, C and E. Orthogonal cross sections of single slices through the biofilm with top and right panels representing perpendicular slices: B, D and F.

Fig. S9 A) FRR⁵² medium in serum bottle modified from the Hungate technique⁵³ for the growth of *Geoalkalibacter subterraneus*; B) FRR medium inoculated with 20% v/v of *Geoalkalibacter subterraneus* cells incubated anaerobically at 37°C after gently shaking (Orbital shaker, Model 3540, Bioblock, Fisher Scientific SAS, F67403 Illkirch, Cedex, France) for 48 h; and C) Harvested *Geoalkalibacter subterraneus* cells by centrifugation at 3000 rpm during 10 min.

References:

- 1. J. Niessen, U. Schröder and F. Scholz, *Electrochemistry Communications*, 2004, **6**, 955-958.
- 2. C. W. Marshall and H. D. May, *Energy & Environmental Science*, 2009, **2**, 699-705.
- 3. O. Nercessian, S. Parot, M.-L. Délia, A. Bergel and W. Achouak, *PLoS ONE*, 2012, 7, e34216.
- 4. S. Veer Raghavulu, P. N. Sarma and S. Venkata Mohan, *Journal of Applied Microbiology*, 2011, **110**, 666-674.
- 5. K. P. Katuri, S. Rengaraj, P. Kavanagh, V. O'Flaherty and D. Leech, *Langmuir*, 2012, 28, 7904-7913.
- 6. D. R. Bond, D. E. Holmes, L. M. Tender and D. R. Lovley, *Science*, 2002, 295, 483-485.
- 7. J. F. Miceli, P. Parameswaran, D.-W. Kang, R. Krajmalnik-Brown and C. I. Torres, *Environmental Science & Technology*, 2012, **46**, 10349-10355.
- 8. X. Abrevaya, N. Sacco, P. D. Mauas and E. Cortón, *Extremophiles*, 2011, 15, 633-642.
- 9. M. Pierra, E. Trably, J.-J. Godon and N. Bernet, unpublished work.
- D. Xing, S. Cheng, B. Logan and J. Regan, *Applied Microbiology and Biotechnology*, 2010, 85, 1575-1587.
- 11. C. Dumas, R. g. Basseguy and A. Bergel, *Electrochimica Acta*, 2008, **53**, 3200-3209.
- 12. V. R. Nimje, C.-Y. Chen, C.-C. Chen, J.-S. Jean, A. S. Reddy, C.-W. Fan, K.-Y. Pan, H.-T. Liu and J.-L. Chen, *Journal of Power Sources*, 2009, **190**, 258-263.
- S. V. Raghavulu, R. K. Goud, P. N. Sarma and S. V. Mohan, *Bioresource Technology*, 2011, 102, 2751-2757.
- 14. J. P. Badalamenti, R. Krajmalnik-Brown and C. I. Torres, *mBio*, 2013, 4.
- 15. P. Parameswaran, T. Bry, S. Popat, B. G. Lusk, B. E. Rittmann and C. I. Torres, *Environmental Science & Technology*, 2013.
- 16. A. A. Carmona-Martínez, F. Harnisch, U. Kuhlicke, T. R. Neu and U. Schröder, *Bioelectrochemistry*, 2012.
- 17. S. Xu and H. Liu, *Journal of Applied Microbiology*, 2011, **111**, 1108-1115.
- 18. E. Marsili, J. B. Rollefson, D. B. Baron, R. M. Hozalski and D. R. Bond, *Applied and Environmental Microbiology*, 2008, **74**, 7329-7337.
- 19. A. A. Carmona-Martínez, F. Harnisch, L. A. Fitzgerald, J. C. Biffinger, B. R. Ringeisen and U. Schröder, *Bioelectrochemistry*, 2011, **81**, 74-80.
- 20. T. Zhang, L. Zhang, W. Su, P. Gao, D. Li, X. He and Y. Zhang, *Bioresource Technology*, 2011, **102**, 7099-7102.
- 21. A. Jain, G. Gazzola, A. Panzera, M. Zanoni and E. Marsili, *Electrochimica Acta*, 2011, 56, 10776-10785.
- 22. B.-Y. Chen, Y.-M. Wang and I. S. Ng, Bioresource Technology, 2011, 102, 1159-1165.
- 23. K. C. Wrighton, J. C. Thrash, R. A. Melnyk, J. P. Bigi, K. G. Byrne-Bailey, J. P. Remis, D. Schichnes, M. Auer, C. J. Chang and J. D. Coates, *Applied and Environmental Microbiology*, 2011, **77**, 7633-7639.
- 24. H. Richter, K. McCarthy, K. P. Nevin, J. P. Johnson, V. M. Rotello and D. R. Lovley, *Langmuir*, 2008, **24**, 4376-4379.
- 25. M. Liu, Y. Yuan, L. X. Zhang, L. Zhuang, S. G. Zhou and J. R. Ni, *Bioresource Technology*, 2010, **101**, 1807-1811.
- 26. J. Šefčovičová, J. Filip, P. Gemeiner, A. Vikartovská, V. Pätoprstý and J. Tkac, *Electrochemistry Communications*, 2011, **13**, 966-968.
- 27. A. Venkataraman, M. Rosenbaum, J. B. A. Arends, R. Halitschke and L. T. Angenent, *Electrochemistry Communications*, 2010, **12**, 459-462.
- 28. Y. Yuan, J. Ahmed, L. Zhou, B. Zhao and S. Kim, *Biosensors and Bioelectronics*, 2011, 27, 106-112.
- 29. X. Xia, X.-x. Cao, P. Liang, X. Huang, S.-p. Yang and G.-g. Zhao, *Applied Microbiology and Biotechnology*, 2010, **87**, 383-390.
- 30. D. E. Holmes, J. S. Nicoll, D. R. Bond and D. R. Lovley, *Applied and Environmental Microbiology*, 2004, **70**, 6023-6030.
- 31. D. R. Bond and D. R. Lovley, Applied and Environmental Microbiology, 2005, 71, 2186.

- 32. L. Zhang, S. Zhou, L. Zhuang, W. Li, J. Zhang, N. Lu and L. Deng, *Electrochemistry* Communications, 2008, **10**, 1641-1643.
- 33. A. Venkataraman, M. A. Rosenbaum, S. D. Perkins, J. J. Werner and L. T. Angenent, *Energy & Environmental Science*, 2011, **4**, 4550-4559.
- 34. K. P. Katuri, P. Kavanagh, S. Rengaraj and D. Leech, *Chemical Communications*, 2010, **46**, 4758-4760.
- 35. L. Deng, F. Li, S. Zhou, D. Huang and J. Ni, Chinese Science Bulletin, 2010, 55, 99-104.
- 36. D. Xing, Y. Zuo, S. Cheng, J. M. Regan and B. E. Logan, *Environmental Science & Technology*, 2008, **42**, 4146-4151.
- 37. S. K. Chaudhuri and D. R. Lovley, *Nat Biotech*, 2003, **21**, 1229-1232.
- 38. K. Fricke, F. Harnisch and U. Schroder, *Energy & Environmental Science*, 2008, 1, 144-147.
- 39. D. E. Holmes, D. R. Bond and D. R. Lovley, *Appl. Environ. Microbiol.*, 2004, **70**, 1234-1237.
- 40. Y. Zuo, D. Xing, J. M. Regan and B. E. Logan, *Applied and Environmental Microbiology*, 2008, **74**, 3130-3137.
- 41. A. S. Finch, T. D. Mackie, C. J. Sund and J. J. Sumner, *Bioresource Technology*, 2011, **102**, 312-315.
- 42. L. Zhuang, S. Zhou, Y. Yuan, T. Liu, Z. Wu and J. Cheng, *Bioresource Technology*, 2011, 102, 284-289.
- 43. F. Rezaei, D. Xing, R. Wagner, J. M. Regan, T. L. Richard and B. E. Logan, *Applied and Environmental Microbiology*, 2009, **75**, 3673-3678.
- 44. R. Ducommun, M.-F. Favre, D. Carrard and F. Fischer, Yeast, 2010, 27, 139-148.
- 45. C. Milliken and H. May, *Applied Microbiology and Biotechnology*, 2007, **73**, 1180-1189.
- 46. S. A. Patil, K. Hasan, D. Leech, C. Hagerhall and L. Gorton, *Chemical Communications*, 2012, **48**, 10183-10185.
- 47. A. E. Inglesby, D. A. Beatty and A. C. Fisher, *RSC Advances*, 2012, **2**, 4829-4838.
- 48. U. Schröder, Journal of Solid State Electrochemistry, 2011, 15, 1481-1486.
- 49. E. LaBelle, D. R. Bond, D. A. Lowy, A. K. Manohar, Z. He and F. Mansfeld, in *Bioelectrochemical Systems: from Extracellular Electron Transfer to Biotechnological Application.* Eds. K. Rabaey, L. Angenent, U. Schroder and J. Keller, 2010, pp. 135-184.
- 50. A. Okamoto, R. Nakamura and K. Hashimoto, *Electrochimica Acta*, 2011, 56, 5526-5531.
- 51. H. M. Jensen, A. E. Albers, K. R. Malley, Y. Y. Londer, B. E. Cohen, B. A. Helms, P. Weigele, J. T. Groves and C. M. Ajo-Franklin, *Proceedings of the National Academy of Sciences*, 2010.
- 52. A. C. Greene, B. K. C. Patel and S. Yacob, *International Journal of Systematic and Evolutionary Microbiology*, 2009, **59**, 781-785.
- 53. T. L. Miller and M. J. Wolin, *Journal of Applied Microbiology*, 1974, 27, 985-987.