Tuning the Gallium Content of Metal Precursors for Cu(In,Ga)Se₂ Thin Film Solar Cells by Electrodeposition from a Deep Eutectic Solvent

João C. Malaquias¹, David Regesch², Phillip J. Dale¹, Marc Steichen¹

¹University of Luxembourg, Laboratory for Energy Materials, 41, rue du Brill, L-4422 Belvaux, Luxembourg.

²University of Luxembourg, Laboratory for Photovoltaics, 41, rue du Brill, L-4422 Belvaux, Luxembourg.

(1) We present the mathematical development that via the mass fluxes (J), the Ga/III ratio of the deposits can be controlled.

According to Fick’s Law, during codeposition of two elements, in a system under diffusion control, the composition of a deposit is dictated by the ratio of the mass fluxes, J. Therefore, for In and Ga one can write:

$$\frac{J_{Ga}}{J_{In}} = \frac{n_{Ga}}{n_{In}}_{\text{deposit}}$$ (1)

a) Considering $J_{Ga}/J_{In} = A$ one can prove that:

$$\frac{Ga}{Ga+In} = \frac{Ga}{III} = \frac{A}{A+1}$$ (2)

This equation establishes a relation between the mass fluxes and the expected Ga/III ratio, thus evidencing, theoretically, that via the mass fluxes one can control this ratio. The next steps will focus on proving that the charge passed during deposition, Q, ensures the desired stoichiometry.
When performing electrodeposition of two different species, the total current flowing, j_t, is the sum of the individual currents. Thus, in our system the currents generated by the reduction of In and Ga during deposition:

$$j_t = j_{In} + j_{Ga}$$

(3)

b) Therefore, by integration in time, one obtains the charge, Q:

$$Q_t = \int_0^t j_{In} \, dt + \int_0^t j_{Ga} \, dt$$

(4)

Since the deposition is performed under a diffusion control regime and the working electrode is rotated, any time dependent behaviour of the current is eliminated and one can directly write:

$$Q_t = Q_{In} + Q_{Ga}$$

(5)

c) Using Faraday’s Law, one can write explicitly both components of Q_t.

$$Q_{In} = \frac{kF n_{In}}{\eta}$$

(6)

$$Q_{Ga} = \frac{kF n_{Ga}}{\eta}$$

(7)

Where k is the number of transferred electrons, F is the Faraday constant (96485 C.mol$^{-1}$), n is the number of moles deposited (mol) and η is the plating efficiency. The latter variable will be considered 90% for both species.

d) One can then write:

$$Q_{Ga} = Q_{In} \cdot \frac{n_{Ga}}{n_{In}} \Leftrightarrow Q_{Ga} = Q_{In} \cdot \frac{J_{Ga}}{J_{In}}$$

(8)

$$Q_t = Q_{In} \left(1 + \frac{J_{Ga}}{J_{In}}\right)$$

(9)
Equation 9 shows the total charge passed during deposition will be divided into 2 components, where the latter is related to Ga and includes a correction term J_{Ga}/J_{In} which ensures the expected stoichiometry of the deposit.

\begin{equation}
(2)
\end{equation}

Expected and measured CVs of ChCl:U-GaCl$_3$-InCl$_3$ on a Mo electrode with Ga/III = a) 0.3, b) 0.7 and c) 0.9. The expected CVs were calculated from the sum of the single element systems ChCl:U-GaCl$_3$ and ChCl:U-InCl$_3$ on a Mo electrode. All CVs were baseline corrected.