Electronic Supplementary Information

Faster Photoinduced Electron Transfer in a Diluted Mixture than in Neat Donor Solvent:
Effect of Excited-State H-Bonding

Nabajeet Barman, Debabrata Singha, and Kalyanasis Sahu*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

*To whom correspondence should be addressed. Email: ksahu@iitg.ernet.in
Figure S1: Absorption spectra of C102 in the cyclohexane-aniline (top panel) and toluene-aniline (bottom panel) mixtures at different mole fraction of aniline, X_{AN}.
Figure S2: Absorption spectra of C102 in cyclohexane on gradual addition of DMA.
Figure S3: Emission spectra of C102 in cyclohexane on gradual addition of DMA.
Figure S4: Fluorescence decays of C102 in the cyclohexane-aniline mixtures at different mole fraction of aniline, X_{AN}. Arrows indicate mode of the lifetime variation with increase in X_{AN}. The decays were measured at 410 nm (left panel) and 460 nm (right panel).
Figure S5: Fluorescence decays of C102 in the cyclohexane-aniline (left panel) and toluene-aniline (right panel) mixtures at three different emission wavelengths. Mole fractions of aniline, X_{AN} in cyclohexane-aniline and toluene-aniline mixtures are 0.075 and 0.13, respectively.
Calculation of the solvation energy correction (ΔE_{sol}):

ΔE_{sol} can be calculated by using the following equation:1

$$\Delta E_{\text{sol}} = \Delta G^0_{\text{s}(-)} + \Delta G^0_{\text{s}(+)}$$ \hspace{1cm} (1)

where $\Delta G^0_{\text{s}(-)}$ and $\Delta G^0_{\text{s}(+)}$ are the free energies of solvation of anion and cation respectively. Free energy of solvation can be calculated by using the following equations:1

$$\Delta G^0_{\text{s}(-)} = -\left(\frac{N_0 z_i^2 e^2}{8 \pi \varepsilon_0} \right) \left(1 - \frac{1}{\varepsilon_s} \right) \frac{1}{(A_p + r_i)}$$ \hspace{1cm} (3)

$$\Delta G^0_{\text{s}(+)} = -\left(\frac{N_0 z_i^2 e^2}{8 \pi \varepsilon_0} \right) \left(1 - \frac{1}{\varepsilon_s} \right) \frac{1}{(B_p + r_i)}$$ \hspace{1cm} (4)

where N_0 is the Avogadro’s number, z_i is the ionic charge, e is the electronic charge, ε_0 is the permittivity of the free space, ε_s the dielectric constant of the solvent, r_i is the ionic radius, and A_p and B_p are the Fawcett’s parameters of acidity and basicity, respectively. A_p and B_p are defined by the following equations:1

$$A_p = 1.29E_T(30) - 33.3$$ \hspace{1cm} (5)

$$B_p = 10.14 + 0.108D_n$$ \hspace{1cm} (6)

where $E_T(30)$ is the polarity scale and D_n is the donor number.

References