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Figure	 S7.	 Cyclic	 voltammograms	 of	 a	 2	 mM	 N2‐saturated	 solution	 of	 Zn‐tpy	 and	 its	
evolution	 as	 the	 number	 of	 scans	 is	 increased.	 The	 working	 electrode	 used	 was	 1	 mm	
diameter	 glassy	 carbon	 electrode,	 the	 counter	 electrode	 was	 a	 platinum	 wire,	 and	 the	
reference	electrode	was	a	Ag/AgCl,	3M	KCl	 reference	electrode.	The	solvent	system	used	
was	DMF/H2O	 (95:5,	 v:v),	with	 0.1M	of	TBAP	 as	 supporting	 electrolyte.	 The	 first	 scan	 is	
represented	 in	 blue	 and	 the	 last	 scan	 in	 red.	 Arrows	 indicate	 the	 evolution	 of	 the	
electrochemical	features.	
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Figure	 S13.	 Current	 (Top	 left)	 and	 charge	 (Top	 right)	 measured	 during	 controlled‐
potential	electrolyses	of	5	mM	Zn‐tpy	CO2‐saturated	solutions	at	–2.15	V.	Bulk	electrolyses	
were	 performed	 in	 10	 mL	 of	 DMF/D2O	 (95:5,	 v:v),	 with	 0.1M	 LiClO4,	 using	 a	 1.5	 cm	
diameter	 pool	 of	mercury	 as	 the	working	 electrode.	 The	 cell	 used	 is	 described	 in	 Figure	
S20.	Data	was	recorded	every	0.2	s	and	the	current	intensity	data	was	smoothed	using	an	
adjacent‐averaging	method	over	4	s.		
Bottom:	At	the	end	of	the	bulk	electrolysis,	200	µL	of	iodomethane	(3.2	mmol)	was	added	
trough	 the	 septum	 of	 the	 electrochemical	 cell	 and	 the	 solution	 was	 stirred	 at	 room	
temperature	 for	 1h30min.	 The	 aliphatic	 (right)	 and	 aromatic	 (left)	 regions	 of	 1H	 NMR	
spectra	 before	 the	 addition	 of	 CH3I	 (black)	 and	 after	 reaction	 with	 CH3I	 (blue)	 are	
presented	 here.	 The	 spectra	 have	 been	 referenced	 to	 the	 aldehyde	 proton	 of	 DMF	 (7.9	
ppm).	The	Red	stars	mark	the	appearance	of	new	peaks	after	reaction	with	CH3I.		
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Figure	S16.	 Variation	of	 Icat	with	 the	 concentration	 of	Co‐tpy	 in	 CO2‐saturated	 solutions	
during	cyclic	voltammetry	experiments	at	50	mV/s.	The	working	electrode	used	was	1	mm	
diameter	 glassy	 carbon	 electrode,	 the	 counter	 electrode	 was	 a	 platinum	 wire,	 and	 the	
reference	electrode	was	a	Ag/AgCl,	3M	KCl	 reference	electrode.	The	solvent	system	used	
was	 DMF/H2O	 (95:5,	 v:v),	 with	 0.1M	 of	 TBAP	 as	 supporting	 electrolyte.	 The	 correlation	
coefficient	of	the	linear	fit	(red)	is	0.98.		
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Sample	Foot	of	the	Wave	Calculation	
	
Constants	
R	=	Gas	Constant	=	8.31446	(C	V)/(mol	K)	
T	=	Temperature	=	297	K	
F	=	Faradays	Constant	=	96485.34	C/mol	
	
Variables	
iop	=	peak	current	in	the	absence	of	substrate	(CO2)	
i	=	current	measured	under	catalytic	conditions	
ν	=	scan	rate	of	CV	in	V/s	
CoA	=	Concentration	of	substrate	(CO2)	in	the	bulk	solution	in	mol/L		
E	=	applied	potential	in	V	
EoPQ	=	(Epa+Epc)/2	measured	for	reaction	couple	(Co(tpy)2+/Co(tpy)2)	in	the	absence	of	CO2	
in	V	
EoAB	=	potential	for	CO2	reduction	to	CO	under	conditions	used	in	V	
	V	in	overpotential	=	ߟ
k2	=	second	order	rate	constant	
kap	=	pseudo‐first	order	rate	constant	under	excess	of	CO2	
TOF0	=	Turnover	Frequency	at	0	applied	overpotential	
TOF	=	Turnover	Frequency	at	a	specified	overpotential		
	
Values	of	Variables	set	by	Experiment	or	Estimated	from	Literature	
ν	=	0.250	V/s	
CoA	=	0.23	mol/L		Estimated	from	Reference	1	
EoAB	=	–1.41	V	vs.	Fc+/Fc		Estimated	 from	Reference	1	which	reports	 the	potential	as	–
0.690	V	vs.	NHE	with	the	Fc+/Fc	potential	taken	to	be	0.720	V	vs.	NHE4	
	
Values	of	Variables	Measured	by	Experiments	in	absence	of	CO2	
iop	=	peak	current	in	the	absence	of	substrate	(CO2)	
EoPQ	=	–2.03	V	vs.	Fc+/Fc	
	
Values	Recorded	during	Catalytic	CVs	
i,	E	
	
Calculations	of	Rate	Constant	and	Turnover	Frequency2,3	
The	 following	 relationship	 from	 Reference	 2	 (bottom	 of	 first	 column	 on	 page	 11238)	 is	
utilized:	
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Plotting	the	following	relationship		
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transforms	a	typical	CV	(a	current	vs.	Potential	plot)	into	a	form	wherein	the	slope	of	the	of	
the	linear	region	of	the	low	potential	values	provides	access	to	the	rate	constant	k:	
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This	pseudo	first	order	rate	constant	can	be	transformed	into	a	turnover	frequency	via	the	
following	relationship	found	in	reference	2,	based	off	of	equation	4	within	said	reference,	
which	was	slightly	amended	within	reference	3.	
logሺܱܶܨሻ ൌ log൫݇൯ 	െ	

ி

ோ் ୪୬ሺଵሻ
ሺܧ

 െ ொܧ
 െ 		ሻߟ

In	an	effort	to	compare	the	activity	to	other	values	reported	in	the	literature,	of	particular	
interest	 is	 the	 activity	 of	 the	 catalyst	 at	 zero	 overpotential.	 Using	 the	 pseudo‐first	 order	
rate	constant	derived	above,	the	TOF0	can	be	calculated	as	such:	
logሺܱܶܨሻ ൌ log൫݇൯ 	െ 	

ி

ோ் ୪୬ሺଵሻ
൫ܧ

 െ ொܧ
 െ ൯ߟ ൌ		

logሺ10.5	ିܯଵିݏଵሻ 	െ	
ଽସ଼ହ.ଷସ
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	಼
ቁሺଶଽሻሺ୪୬ሾଵሿሻ

ሺെ1.41ܸ െ െ2.03ܸ െ 0ܸሻ ൌ		

	
1.0212 െ 	16.96895	ܸିଵሺ0.62ܸሻ ൌ 	െ9.5			

Thus,	the	log(TOF0)	at	zero	overpotential	is	calculated	to	be	–9.5	.	This	corresponds	to	an	
intrinsic	TOF	equal	to	3.2×10–10	M–1	s–1.	
	
The	above	procedure	was	 followed	for	all	of	 the	different	scan	rates	analyzed	within	this	
manuscript.	
	
Practically,	within	 the	catalytic	wave	 that	 is	observed	experimentally,	 there	 is	an	applied	
overpotential	of	0.670	V.	This	can	be	be	included	in	the	calculation	of	TOF	as	shown	below:	
logሺܱܶܨሻ ൌ log൫݇൯ 	െ	
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ቁሺଶଽሻሺ୪୬ሾଵሿሻ
ሺെ1.41ܸ െ െ2.03ܸ െ 0.67ܸሻ ൌ		

1.0212 െ 	16.96895	ܸିଵ൫– 0.05ܸ൯ ൌ 	1.9			
	
Thus,	the	log(TOF)	with	an	applied	overpotential	of	0.670	V,	representing	conditions	within	
the	catalytic	wave	found	experimentally,	is	calculated	to	be	1.9.	This	corresponds	to	a	TOF	
equal	to	7.4×101	s–1.	
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