Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2014

## **Electronic Supporting Information**

## Development and Understanding of Cobaloxime Activity through Electrochemical Molecular Catalyst Screening

David W. Wakerley and Erwin Reisner\*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

E-mail: reisner@ch.cam.ac.uk

| Contents              |         |
|-----------------------|---------|
| Supporting Table      | page S2 |
| Supporting Figures    | page S3 |
| Supporting References | page S8 |

| Parameter                         | Value                              | Bond    | Length (Å)  |
|-----------------------------------|------------------------------------|---------|-------------|
| Chemical Formula                  | $C_{32}H_{52}Cl_2N_{10}O_{11}Co_2$ | Co-N(1) | 1.963(1)    |
| Fw gmol <sup>-1</sup>             | 941.60                             |         |             |
| Space group                       | $P2_1/n$                           | Co-N(2) | 1.903(1)    |
| a (Å)                             | 8.0000(1)                          | Co-N(3) | 1.905(1)    |
| b (Å)                             | 13.5322(2)                         |         |             |
| c (Å)                             | 19.2803(3)                         | Co-N(4) | 1.895(1)    |
| $\alpha$ (°)                      | 90                                 | ( )     | ( )         |
| β (°)                             | 92.183(1)                          | Co-N(5) | 1.885(1)    |
| γ (°)                             | 90                                 |         | 2 22 22 (1) |
| V (Å <sup>3</sup> )               | 2085.72                            | Co-Cl   | 2.2302(4)   |
| Z                                 | 2                                  |         |             |
| $d_{calcd}$ (g cm <sup>-3</sup> ) | 1.499                              |         |             |
| $\mu$ (cm <sup>-1</sup> )         | 9.91                               |         |             |
| Т (K)                             | 180                                |         |             |
| R1                                | 0.0387                             |         |             |
| wR2                               | 0.1164                             |         |             |

**Table S1.** Crystal data, structure refinement details and selected bond lengths for  $[CoCl(dmgH)_2(4-methoxypyridine)]$  (Compound **A**, see Figure 6 for atom labelling scheme).



**Figure S1.** The *in situ* assembly of  $[Co(dmgH)_2(H_2O)_2]$  was monitored *via* UV-vis spectroscopy by comparison to an authentic sample of  $[Co(dmgH)_2(H_2O)_2]$  synthesised according to a published procedure.<sup>1</sup> The UV-vis spectra show dissolved  $[Co(dmgH)_2(H_2O)_2]$  and the corresponding *in situ* assembled complex in H<sub>2</sub>O (0.08 mM).



Figure S2. ESI-mass spectrum (+ve mode) of assembled [Co(dmgH)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] in H<sub>2</sub>O.



**Figure S3.** ESI-mass spectrum (+ve mode) of *in situ* assembled  $[Co(dmgH)_2(pyridine)_2]$  (4 equiv. pyridine added to  $[Co(dmgH)_2(H_2O)_2]$ ) in H<sub>2</sub>O (top) and isolated  $[CoCl(dmgH)_2(4-methoxypyridine)]$  (bottom). Complex fragmentation is similar between the *in situ* assembled and isolated cobaloximes.



**Figure S4.** <sup>1</sup>H-NMR of [Co<sup>III</sup>Cl<sub>2</sub>(dmgH)(dmgH<sub>2</sub>)] in D<sub>2</sub>O (titrated with NaOH to pH 7) before and after addition of 4 equiv. of pyridine, showing complete substitution of axial ligands for pyridine.



**Figure S5.** Addition of increasing amounts of pyridine to  $[Co(dmgH)_2(H_2O)_2]$  (2 mM) in P<sub>i</sub> (0.1 M, pH 7) at 100 mV s<sup>-1</sup>. The numbers left of the catalytic trace indicate the equivalents of pyridine added per Co complex. Enhancement of catalytic current stopped at approximately 4 equiv. of pyridine, after which a slow decrease in catalytic current was observed upon further addition of pyridine.



**Figure S6.** CVs of screened cobaloximes that arose after addition of 4 equiv. of respective axial ligand to  $[Co(dmgH)_2(H_2O)_2]$  (2 mM) in Pi (0.1 M, pH 7) at 100 mV s<sup>-1</sup>. CVs shown are the second consecutive scan with the exception of 3,5-dimethylpyridine (first scan shown), which displays poor stability during catalysis.



**Figure S7.** Consecutive CV scans of  $[Co(dmgH)_2(H_2O)_2]$  (2 mM) after addition of 4 equiv. of 3,5-dimethylpyridine (left) or pyridine (right) at 100 mV s<sup>-1</sup> in P<sub>i</sub> (0.1 M, pH 7), showing the fast decay of the catalytic current over time when using 3,5-dimethylpyridine.



**Figure S8.** (a) LSVs of the Co<sup>III</sup>/Co<sup>II</sup> reduction waves (cathodic sweep) of assembled cobaloximes depicted in Figures 3 and S6 (only cobaloximes with clear Co<sup>III</sup>/Co<sup>II</sup> redox waves were used). (b) Correlation between  $\Sigma E_L$  and the  $E_{\frac{1}{2}}$  of the Co<sup>III</sup>/Co<sup>II</sup> redox wave. Calculation of  $\Sigma E_L = 2 \times (Axial \ ligand \ E_L) + 4 \times (dmgH^- \ E_L)$ .  $E_L$  of dmgH- was reported as 0.01 V.<sup>2</sup>



**Figure S9.** LSVs of the isolated cobaloximes **A** to **D** (1 mM) in an aqueous TEOA/Na<sub>2</sub>SO<sub>4</sub> solution (9 mL, 0.1 M each, pH 7) with acetone (1 mL) at 100 mV s<sup>-1</sup>.

## **References.**

- 1. G. N. Schrauzer, G. W. Parshall, and E. R. Wonchoba, *Inorganic Syntheses*, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1968, vol. 11.
- 2. A. B. P. Lever, Inorg. Chem., 1990, 29, 1271–1285.