Supporting information

Cobalt Porphyrin Electrode Films for Electrocatalytic Water Oxidation

Ali Han,a Hongxing Jia,a Hao Ma,a Shifan Ye,a Haotian Wu,a Haitao Lei,b Yongzhen Han,b Rui Cao,*b and Pingwu Du,*a

a CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Department of Chemistry, University of Science and Technology of China (USTC), Hefei, China 230026. b Department of Chemistry, Renmin University of China, Beijing, China 100872

*Corresponding author: dupingwu@ustc.edu.cn; ruicao@ruc.edu.cn
Figure S1. The CV scans were recorded by using bare FTO as working electrodes in 0.1 M TBAH (in 40 mL anhydrous DMF) containing 20 nmol CoP-1/CoP-2 by gradually adding a certain amount of water. The scan rates were 50 mV/s and there were iR compensations (about 3-8 ohms). a, CoP-1; b, CoP-2.
Figure S2. (a). CVs of the FTO electrode in a 0.91 mM ferricyanide solution at various scan rates. (b) Plot of maximum peaks of anodic current (ferro/ferricyanide couple) versus $\nu^{1/2}$.

$A = 0.167 \text{ cm}^2 \pm 0.004 \text{ cm}^2$
Figure S3. EDX data for FTO coated with CoP-1 film before bulk electrolysis.
Figure S4. The profiles of bulk electrolysis at 1.3 V for CoP-1 in 0.5 M and 0.1 M Bi solutions. The working electrodes were FTO coated with 20 nmol CoP-1. Black plot: 0.1 M Bi solution; red plot: 0.5 M Bi solution.
Figure S5. The absorption spectra (a for CoP-1 and b for CoP-2) of the FTO electrodes. Black plot: the bare FTO; red plot: the FTO coated with cobalt porphyrin films; blue plot: the FTO after electrolysis and washed by THF.
Figure S6. HRMS spectrometry of **CoP-1** before electrolysis (a) and after electrolysis (b) and **CoP-2** before electrolysis (c) after electrolysis (d).
Figure S7. (a) SEM images for bare FTO and (b) FTO coated with CoP-2 after bulk electrolysis and washed by THF. (c) EDX data for FTO coated with CoP-2 after bulk electrolysis and washed by THF.
Figure S8. (left) Cyclic voltammograms obtained using FTO coated with 20 nmol/cm2 CoP-1 as the working electrode in a 0.5 M Bi solution. Red plot: CoP-1 deposited FTO; blue plot: clean FTO. The black plot was recorded as the control test in the electrolyte solution using a bare FTO as the working electrode. The scan rate is 50 mV/s with iR compensation. (right) The charges passed through the working electrode during 1 hour electrolysis in a 0.5 M Bi solution at 1.3 V (vs Ag/AgCl). Black plot: bare FTO; red plot: CoP-1 deposited FTO; blue plot: clean FTO.
Figure S9. (a) TEM images for the solution after bulk electrolysis using FTO coated with CoP-1 film as the working electrode. (b) EDX data for the sample measured in (a).
Figure S10. Cyclic voltammograms obtained in a 0.5 M Bi solution containing 20 nmol Co$^{2+}$ by using bare FTO as the working electrodes. After several CV scans, to the electrolyte solution was added excess bpy (80 μmol). black plot- the CV plot with no bpy, red plot- the CV plot with bpy. Both CV scans used the bare FTO as the working electrode. The scan rate is 50 mV/s and there is iR compensation (about 3-8 ohms).
Figure S11. The charge passed through the working electrode during 1 hour electrolysis of CoP-1 film under different pH solutions at 1.3 V, black plot: pH=4.7; red plot: pH=9.2; green plot: pH=13.0. The area of the working electrode is 0.75 cm².
Figure S12. The recyclability of CoP-1 catalyst film for water oxidation under the controlled potential at 1.3 V in a 0.5 M Bi solution. The black plot represented the passed charge and the red plot displayed the current density during electrolysis. For the whole process, the GCE electrode (d= 3 mm) coated with CoP-1 film was used, washed with THF after 1 hour electrolysis and reused for another cycle of electrolysis.