Supporting Information

Understanding the Growth and Photoelectrochemical Properties of Mesocrystals and Single Crystals: A Case of Anatase TiO₂

Zhensheng Hong, *a Hong Dai, b Zhigao Huang a and Mingdeng Wei* c

a College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 350108, China.
b College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350108, China.
c Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China.

Fig. S1 N₂ adsorption-desorption isotherms of the TiO₂ mesocrystals. The insets show the BJH pore size distribution.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2014
Fig. S2 XRD patterns of the precipitates obtained at different reaction times under (a) solvothermal and (b) hydrothermal conditions. The JCPDS patterns in (a) and (b) are anatase TiO$_2$ and TiO$_2$-B, respectively.
Fig. S3 FTIR patterns of titanate precursor and the precipitates obtained at different reaction times under solvothermal conditions, as well as the precipitate obtained after 48 h of reaction and 30 min of calcination at 400 °C.

Fig. S4 TGA curves of the as-precipitated TiO$_2$ mesocrystals (a) and single crystals (b) synthesized at 200 °C under solvothermal and hydrothermal conditions.