Supplementary Information

Effect of pH on the chemical modification of quercetin and structurally related flavonoids characterized by optical (UV-visible and Raman) spectroscopy

Z. Jurasekova1,2*, C. Domingo2, J.V. Garcia-Ramos2 and S. Sanchez-Cortes2*

1Department of Biophysics, P. J. Safarik University, Jesenna 5, 041 54 Kosice, Slovakia
2Instituto de Estructura de la Materia, CSIC, Serrano, 121, 280 06 Madrid, Spain.

*Corresponding authors

Dr. Z. Jurasekova
E-mail: zuzana.jurasekova@upjs.sk
Department of Biophysics. UPJS in Kosice.
Jesenna 5.
041 54 Kosice. Slovakia
Fax: Phone: + 421 55 234 2245

Dr. S. Sanchez-Cortes
E-mail: imts158@iem.cfmac.csic.es
Instituto de Estructura de la Materia. CSIC.
Serrano, 121.
280 06 Madrid. Spain.
Fax: Phone: + 34 91 5 61 68 00
Figure S1

FT-Raman spectra of structurally related flavonols (kaempferol, KPF; galangin, GAL; morin, MOR), flavanone (taxifolin, TAX) and flavone (apigenin, APG) in absolute ethanol (EthOH) and in 0.5 M NaOH aqueous solution (NaOH); 20mg/mL. The excitation line was 1064 nm. The spectra have been normalized to the intensity of the band at $\approx 600 \text{ cm}^{-1}$.
Figure S2

(a) FT-Raman spectrum of quercetin (QUC) in 0.5 M NaOH aqueous solution (NaOH); 20mg/mL, $\lambda_{exc} = 785\text{nm}$; and (b) calculated Raman spectrum of QUC* (\approx benzofuranone) obtained at PCM/B3LYP/6-311++G** level theory with the applied scale-factor: 0.941. Inset: The optimized structure of benzofuranone in calculated in water (front and lateral view).
Figure S3

(a) FT-Raman spectrum of fisetin (FIS) in 0.5 M NaOH aqueous solution (NaOH); 20mg/mL, $\lambda_{exc} = 785$nm; and (b-f) calculated Raman spectra of different conformers of FIS* obtained at PCM/B3LYP/6-311++G** level theory without any scale-factor.