SUPPORTING INFORMATION

Cation-exchanged SAPO-34 for adsorption-based hydrocarbon separations: Predictions from dispersion-corrected DFT calculations

Michael Fischer, Robert G. Bell*

Department of Chemistry, University College London

20 Gordon Street, London WC1H 0AJ, United Kingdom

A) DFT-optimised geometries for preferred cation sites

Figure S1: Full unit cell of Na-SAPO-34 as used in the DFT calculations.

Table S1: Energy difference $\Delta E(SII-SIII')$ obtained from DFT calculations assuming the cations at
either of the two sites. The energy difference is given per cation, rather than per unit cell. The
ionic radius <i>r_{ion}</i> for octahedral coordination is also given.

	$\Delta E(SII-SIII') / kJ mol^{-1}$	r _{ion} / Å
Li+	-39.0	0.76
Na⁺	-17.5	1.02
K+	14.3	1.38
Rb⁺	29.3	1.52
Mg ²⁺	-106.6	0.72
Ca ²⁺	-38.8	1.00
Sr ²⁺	4.7	1.18
Cu+	-82.1	0.77
Ag+	-20.5	1.15
Fe ²⁺	-130.9	0.61

Figure S2: DFT-optimised geometry of the environment of lithium in Li-SAPO-34. The distances to the closest framework oxygens (in Ångström) are given. The distance between the two lithium cations amounts to 4.27 Å.

Figure S3: DFT-optimised geometry of the environment of sodium in Na-SAPO-34. The distances to the closest framework oxygens (in Ångström) are given. The distance between the two sodium cations amounts to 5.35 Å.

Figure S4: DFT-optimised geometry of the environment of potassium in K-SAPO-34. The distances to the closest framework oxygens (in Ångström) are given.

Figure S5: DFT-optimised geometry of the environment of rubidium in Rb-SAPO-34. The distances to the closest framework oxygens (in Ångström) are given.

Figure S6: DFT-optimised geometry of the environment of magnesium in Mg-SAPO-34. The distances to the closest framework oxygens (in Ångström) are given.

Figure S7: DFT-optimised geometry of the environment of calcium in Ca-SAPO-34. The distances to the closest framework oxygens (in Ångström) are given.

Figure S8: DFT-optimised geometry of the environment of strontium in Sr-SAPO-34. The distances to the closest framework oxygens (in Ångström) are given.

Figure S9: DFT-optimised geometry of the environment of copper in Cu-SAPO-34. The distances to the closest framework oxygens (in Ångström) are given. The distance between the two copper cations amounts to 2.55 Å.

Figure S10: DFT-optimised geometry of the environment of silver in Ag-SAPO-34. The distances to the closest framework oxygens (in Ångström) are given. The distance between the two silver cations amounts to 5.50 Å.

Figure S11: DFT-optimised geometry of the environment of iron in Fe-SAPO-34. The distances to the closest framework oxygens (in Ångström) are given.

B) DFT calculations for Cu/Na-SAPO-34

1 = Cu and Na at site SII

The calculations for Cu/Na-SAPO-34 considered a total of five distributions of the two cations. Scenario 1 was found to be the energetically preferred combination. For the other four scenarios X, the energy difference $\Delta E(1-X)$ is given (per unit cell).

2 = Cu at site SII, Na at site SIII'	$\Delta E(1-2) = -27.3 \text{ kJ mol}^{-1}$
3 = Cu at site SIII', Na at site SII	$\Delta E(1-3) = -68.2 \text{ kJ mol}^{-1}$
4 = Cu at site SI, Na at site SIII'	$\Delta E(1-4) = -33.4 \text{ kJ mol}^{-1}$
5 = Cu at site III', Na at site SI	$\Delta E(1-5) = -53.7 \text{ kJ mol}^{-1}$

Figure S12: DFT-optimised geometry of the environment of copper in Cu/Na-SAPO-34. The distances to the closest framework oxygens (in Ångström) are given. The distance between the copper and the sodium cation amounts to 4.42 Å.

C) Comparison of DFT-D interaction energy and pure DFT interaction energy

	C ₂ H ₆		C ₂ H ₄		C ₂ H ₂	
	E_{int}	E_{nodisp}	E_{int}	E_{nodisp}	E_{int}	E_{nodisp}
Li-SAPO-34	-57.9	-5.2	-66.6	-24.4	-65.1	-30.1
Na-SAPO-34	-57.2	-12.0	-61.6	-29.5	-57.3	-32.3
Mg-SAPO-34	-72.0	-27.4	-102.0	-63.2	-98.2	-67.7
Ca-SAPO-34	-72.3	-34.4	-84.9	-55.4	-82.6	-59.1
Sr-SAPO-34	-67.2	-30.9	-80.5	-52.8	-75.5	-53.9
Cu/Na-SAPO-34	-39.5	-2.2	-165.7	-136.4	-151.7	-128.4
Ag-SAPO-34	-49.6	-13.7	-128.4	-101.5	-106.5	-86.3
Fe-SAPO-34	-37.7	-0.3	-168.0	-118.4	-149.5	-115.4

Table S2: DFT interaction energies E_{int} , which include the Grimme-type dispersion correction, and "DFT-only" interaction energy E_{nodisp} , which is obtained by subtracting the dispersion correction term, for ethane, ethylene, and acetylene. All values in kJ mol⁻¹.

Table S3: DFT interaction energies E_{int} , which include the Grimme-type dispersion correction, and "DFT-only" interaction energy E_{nodisp} , which is obtained by subtracting the dispersion correction term, for propane and propylene. All values in kJ mol⁻¹.

	C ₃ H ₈		C	₃ H ₆
	E_{int}	E_{nodisp}	E_{int}	E_{nodisp}
Li-SAPO-34	-65.5	-0.5	-84.2	-22.0
Na-SAPO-34	-69.3	-12.4	-81.7	-31.2
Mg-SAPO-34	-86.4	-35.4	-127.5	-68.6
Ca-SAPO-34	-88.3	-35.5	-111.3	-60.9
Sr-SAPO-34	-85.7	-36.1	-112.4	-61.0
Cu/Na-SAPO-34	-52.3	0.0	-175.9	-129.3
Ag-SAPO-34	-66.0	-16.3	-145.0	-97.8
Fe-SAPO-34	-50.0	0.2	-182.4	-109.5

D) Additional electron density plots

1) Ethane

Figure S13: Isosurface of the electron density difference for ethane adsorbed in Li-, Mg-, Cu/Na-, and Fe-SAPO-34. The isosurfaces were created for an isodensity value of 0.01 e Å⁻³. Blue designates regions of charge accumulation, and yellow designates regions of charge depletion.

2) Propylene

Figure S14: Isosurface of the electron density difference for propylene adsorbed in Li-, Mg-, Cu/Na-, and Fe-SAPO-34. The colour scheme and the isodensity value are the same as in figure S12.

3) Acetylene

Figure S15: Isosurface of the electron density difference for acetylene adsorbed in Li-, Mg-, Cu/Na-, and Fe-SAPO-34. The colour scheme and the isodensity value are the same as in figure S12.

4) Unsaturated hydrocarbons in Ag-SAPO-34

Figure S16: Isosurface of the electron density difference for ethylene, acetylene, and propylene adsorbed in Ag-SAPO-34. The colour scheme and the isodensity value are the same as in figure S12.