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Additional Experimental. 

Synthesis of (±)-calcium tartrate tetrahydrate.  Crystallization was induced using a silica-based gel.  To prepare the 

silica gel, approximately 50 mL of 0.5 M DL-tartaric acid was titrated with a solution of 0.5 M sodium metasilicate 

to a pH of 4.  Subsequently, about 50 mL of the solution was placed into several large test tubes and allowed to set 

for a period of 48 hours.  Once the gel had set, 15 mL of 0.5 M CaCl2 was carefully added to each test tube.  The test 

tubes were then stoppered and placed into a darkened water bath which was temperature regulated at 40 °C, and the 

reaction was allowed to progress for approximately five weeks.  It is noted that after the addition of the CaCl2 

solution, approximately two weeks were required for the gel to re-set.  After the five week incubation period, the 

resulting crystals were extracted from the gel using methanol.  Specifically, the gel was placed onto a petri dish and 

methanol was added until the gel phase dissolved.  The liquid phase was then removed.  The product crystals were 

then placed into a Buchner funnel, rinsed thoroughly with methanol, and dried under suction. 

Solid-State 
13

C NMR.  Data were primarily acquired at the University of Ottawa using a wide bore Bruker AVANCE 

III spectrometer operating at B0 = 9.4 T (ν0(
13

C) = 100.62 MHz) and used a 4 mm HXY probe.  The data for calcium 

acetate monohydrate were recorded at the National Research Council Canada (Montreal road campus) using a wide 

bore Bruker AVANCE spectrometer operating at 4.7 T (ν0(
13

C) = 50.41 MHz) and used a 7 mm HX probe.  All 
13

C 

solid-state NMR spectra were referenced using solid adamantane as an external secondary reference, and is such that 

the most deshielded 
13

C NMR peak of adamantane is set to 38.52 ppm, as specified by Hayashi and Hayamizu.
1
  

Pulse calibrations were also carried out using adamantane.  For further details, see Table S2. 

Powder X-ray Diffraction.  Measurements were carried out at the University of Ottawa with a Rigaku Ultima IV 

diffractometer using a Cu-Kα X-ray source (λ = 1.540598 Å).  Typical 2θ scan ranges were between 5° and 80°.  All 

measurements were carried out at ambient temperature and atmosphere.  Simulations of powder X-ray 

diffractograms were generated using Diamond (ver. 3.2i, Crystal Impact GbR, Bonn, Germany). 

SIMPSON simulation details.  Numerical line shape simulations used version 4 of SIMPSON.
2
  Simulations 

generally used the following parameters: γ angles = 50 – 70; powder averaging via the zcw28656 file; start and 

detect operators were I1x and I1p, respectively; and the ‘gcompute’ method was selected.  After generating the time-

domain points, they were Fourier-transformed and about 8 – 80 Hz of exponential line broadening was used. 
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Table S1. Detailed 
43

Ca SSNMR experimental acquisition parameters
a
     

compound 
B0 / 

T 

window  

/ kHz 

νMAS  

/ kHz
b
 

points
c
 
π/2 

/ μs
d
 

scans 
recycle 

delay / s 

νrf{
1
H} 

/ kHz 
details 

Ca(OH)2 9.4 20.0 0 1024 7.5
e
 273600 0.7 33.3 

CP from 
1
H; 7 mm HX static probe; TPPM decoupling

3
 during 

acquisition; 30 ms contact time; displayed in Figure 2; 

CP rf fields: 
1
H = ca. 20 kHz; 

43
Ca =  ca. 7 kHz 

 9.4 20.0 0 1024 7.5
e
 30000 0.7 33.3 

Conditions used to generate CP build-up curve; all else is the 

same as directly above, except the use of a variable contact 

time; displayed in Figure 3 

 11.75 40.0 0 3596 2.63 63228 4.0 0 
Bloch decay; 10 mm X static probe; referenced to saturated 

CaCl2(aq); displayed in Figure S3 

 21.1 20.0 5.00 1024 2.0 6830 10.0 0 Bloch decay; 7 mm X MAS probe; displayed in Figure S1 

 21.1 20.0 0 512 9.0
e
 28200 2.0 19.2 

CP from 
1
H; 7 mm HX static probe; SPINAL64 decoupling

4
 

during acquisition; 20 ms contact time; displayed in Figure 2; 

optimized CP rf fields: 
1
H = 24.8 kHz; 

43
Ca = 6.4 kHz 

 21.1 20.0 0 512 9.0
e
 10800 2.0 0 

same as directly above, except no 
1
H decoupling during 

acquisition; displayed in Figure S5 

 21.1 20.0 0 512 9.0
e
 512 2.0 19.2 

Conditions used to generate Figure S4; CP from 
1
H; 7 mm HX 

static probe; SPINAL64 decoupling during acquisition; 20 ms 

contact time; variable contact power on the 
43

Ca channel, while 

the 
1
H rf field was maintained at 24.8 kHz 

α-Ca(CHO2)2 9.4 20.0 5.00 1912 5.5 21144 10.0 0 Bloch decay; 7 mm HX MAS probe; displayed in Figure S8 

 21.1 20.0 5.00 1024 2.0 4096 5.0 0 Bloch decay; 7 mm X MAS probe; displayed in Figure S8 

 21.1 20.0 0 512 1.6 15952 10.0 19.2 
Bloch decay; 7 mm HX static probe; SPINAL64 decoupling 

during acquisition; displayed in Figure 4, T = 295(1) K 

CaCl2·2H2O 11.75 40.0 0 600 2.4 47787 5.0 0 
Bloch decay; 10 mm X static probe; referenced to saturated 

CaCl2(aq); displayed in Figure S9 

 21.1 20.0 4.50 2048 1.8 7920 10.0 0 Bloch decay; 7 mm X MAS probe; displayed in Figure 5 

 21.1 20.0 0 512 1.6 7220 10.0 19.2 
Bloch decay; 7 mm HX static probe; SPINAL64 decoupling 

during acquisition; displayed in Figure 5 

(±)-Ca(C4H4O6) 

·4H2O 
21.1 20.0 5.00 1024 1.8 4896 7.0 0 Bloch decay; 7 mm X MAS probe; displayed in Figure 6 
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compound 
B0 / 

T 

window  

/ kHz 

νMAS  

/ kHz
b
 

points
c
 
π/2 

/ μs
d
 

scans 
recycle 

delay / s 

νrf{
1
H} 

/ kHz 
details 

 21.1 20.0 0 512 2.0 24000 10.0 19.2 
Bloch decay; 7 mm HX static probe; continuous wave (cw) 

decoupling during acquisition; displayed in Figure 6 

Ca(C2H3O2)2·H2O 9.4 5.0 5.00 1024 45.0
h
 768 9.0 0 

multiple-Gaussian-RAPT;
5
 7 mm HX MAS probe; displayed in 

Figure S13 

 9.4 10.0 0 1024 45.0 4096 9.0 28 
Hahn echo; 7 mm HX MAS probe; echo delay = 149.5 μs; cw 

decoupling during acquisition; displayed in Figure S13 

 21.1 39.682 0 1024 10.0 256 30.0 25 
Hahn echo; 7 mm HX static probe; echo delay = 200 μs; cw 

decoupling during acquisition; displayed in Figure 7  

 21.1 20.0 5.00 2048 2.25 64 5.0 0 Bloch decay; 7 mm X MAS probe; displayed in Figure 7 

Ca(C5H7O3)2·2H2O 21.1 20.0 4.50 2048 1.8 8495 10.0 0 Bloch decay; 7 mm X MAS probe; displayed in Figure 8 

CaSO4·2H2O 9.4 5.0 5.00 1024 50.0
f
 32 250 0 DFS/echo; 7 mm HX MAS probe; displayed in Figure S18 

 9.4 10.0 0 1024 50.0 336 180 31 
Hahn echo; 7 mm HX MAS probe; echo delay = 150 μs; cw 

decoupling during acquisition; displayed in Figure S18 

 21.1 20.0 5.00 2048 2.25 32 200 0 Bloch decay; 7 mm X MAS probe; displayed in Figure 9 

 21.1 29.762 0 1024 2.3 112 200 25 
Bloch decay; 7 mm HX static probe; cw decoupling during 

acquisition; displayed in Figure 9 

CaCrO4 9.4 10.0 4.00 1024 2.3 65536 2.0 0 Bloch decay; 7 mm HX MAS probe; displayed in Figure S20 

 21.1 100.0 4.00 3960 2.25 22722 3.0 0 Bloch decay; 7 mm X MAS probe; displayed in Figure 10 

 21.1 50.0 0 2048 3.5 37485 0.5 0 
Bloch decay; 10 mm X static probe; referenced to 1 M 

CaCl2(aq); displayed in Figure 10 

CaTiO3 11.75 25.0 0 512 4.0 34816 5.0 0 
Hahn echo; 10 mm HX static probe; echo delay = 1 ms; 

referenced to 1 M CaCl2(aq); displayed in Figure S22 

 21.1 20.0 5.00 1024 2.25 13133 5.0 0 Bloch decay; 7 mm X MAS probe; displayed in Figure 11 

 21.1 50.0 0 1912 3.5 29071 5.0 0 
Bloch decay; 10 mm X static probe; referenced to 1 M 

CaCl2(aq); displayed in Figure 11 

Ca(NO3)2 9.4 5.0 5.00 1024 100
g
 64 15.0 0 DFS/echo; 7 mm HX MAS probe; displayed in Figure S23 

 9.4 10.0 0 1024 50 192 15.0 0 
Hahn echo; echo delay = 100 μs; 7 mm HX MAS probe; 

displayed in Figure S23 
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compound 
B0 / 

T 

window  

/ kHz 

νMAS  

/ kHz
b
 

points
c
 
π/2 

/ μs
d
 

scans 
recycle 

delay / s 

νrf{
1
H} 

/ kHz 
details 

 21.1 20.0 5.00 8192 2.25 64 7.0 0 Bloch decay; 7 mm X MAS probe; displayed in Figure 12 

 21.1 20.0 0 8192 100 640 10.0 0 Bloch decay; 7 mm X static probe; displayed in Figure 12 

CaH2 9.4 8.012 2.50 2048 5.0 24576 10.0 0 Bloch decay; 14 mm X MAS probe; displayed in Figure S25 

 11.75 10.0 6.00 1200 2.5 8192 60.0 35 

Bloch decay; 6 mm T3 MAS probe; SPINAL64 decoupling 

during acquisition; referenced to 1 M CaCl2(aq); displayed in 

Figure S25 

 21.1 20.0 5.00 4096 2.25 3072 40.0 0 Bloch decay; 7 mm X MAS probe; displayed in Figure 13 

 21.1 29.76 0 1024 2.0 5216 40.0 25 
Bloch decay; 7 mm HX static probe; cw decoupling during 

acquisition; displayed in Figure 13 

CaCO3, coral 11.75 5.0 5.00 2048 2.25 65440 2.0 0 Bloch decay; 6 mm T3 MAS probe; displayed in Figure S27 

 21.1 50.0 0 1024 3.5 20000 1.5 0 
Bloch decay; 10 mm X static probe; referenced to 1 M 

CaCl2(aq); displayed in Figure 14 

CaCO3, clam pearl 21.1 100.0 3.00 3960 2.25
i
 16384 2.1 0 Bloch decay; 7 mm X MAS probe; displayed in Figure S27 

 21.1 50.0 0 1024 3.5 12000 2.0 0 
Bloch decay; 10 mm X static probe; referenced to 1 M 

CaCl2(aq); displayed in Figure 14 

a Unless denoted otherwise, experiments were conducted at room temperature, and were referenced to 2 M CaCl2(aq). 
b A value of 0 in this column denotes that the experiment took place under static (i.e., non-spinning) conditions. 
c Complex time-domain data points. 
d Corresponds to central-transition selective pulse length, unless otherwise denoted.  Hence, to calculate the non-selective π/2 pulse length, multiply the value in this cell by 4. 
e Corresponds to 1H saturation pulse length. 
f Central-transition (CT) was enhanced by a DFS pulse (2 ms in duration and sweeping from ±220 kHz to ±40 kHz) prior to the CT-selective pulse. 
g CT enhanced by DFS pulse (2ms; ±250 kHz to ±35 kHz) prior to CT-selective pulse. 
h While this pulse corresponds to a CT selective pulse, multiple-Gaussian-shaped RAPT preparation pulses (25 μs length for one saturating pulse (X), basic   ̅ block, 16 blocks 

(multi-RAPT time was ca. 800 μs), νoff = ±90 kHz) were applied prior to this pulse. 
i Non-selective pulse. 
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Table S2. Detailed 
13

C SSNMR experimental acquisition parameters
a
 

compound 
window  

/ kHz 

νMAS  

/ kHz 
points 

π/2 

/ μs 
scans 

contact 

time / ms 

recycle 

delay / s 

νrf{
1
H} 

/ kHz 
details 

α-Ca(CHO2)2 33.333 5.0 3330 3.5 4208 2.5 20.0 56.7 Displayed in Figure S7 

(±)-Ca(C4H4O6)·4H2O 33.333 5.0 3330 3.5 44400 2.5 2.0 56.7 Displayed in Figure S10 

Ca(C2H3O2)2·H2O 12.019 5.0 3072 4.0 256 2.0 4.0 62.5 7 mm HX probe; displayed in Figure S14  

Ca(C5H7O3)2·2H2O 33.333 5.5 3330 3.5 13840 2.5 5.0 56.7 Displayed in Figure S16 

a Unless specified otherwise, all experiments were performed at room temperature with a 4 mm HXY probe, used CP from the abundant 1H nuclei, and employed heteronuclear 

decoupling during signal acquisition with the SPINAL64 sequence.4  All 13C NMR spectra were referenced using solid adamantane (δiso(
13C, CH2) = 38.52 ppm).1 

 

Table S3. GIPAW DFT quantum chemical H atom geometry optimizations – pseudopotential files used, energies and structure references
a
 

compound pseudopotential files used energy / eV structure reference(s) and additional details 

β-Ca(CHO2)2 H_00PBE.usp; O_00PBE.usp; C_00PBE.usp; Ca_00PBE.usp −12380.645799 Matsui et al.
6
 4 × 4 × 3 k-point grid (24 points) 

CaCl2·2H2O 
H_00PBE.usp; O_00PBE.usp; Cl_00PBE.usp; 

Ca_00PBE.usp 
−11054.255714 Leclaire & Borel.

7
 4 × 3 × 2 k-point grid (12 points) 

Ca(C4H4O6)·3H2O H_00PBE.usp; C_00PBE.usp; O_00PBE.usp; Ca_00PBE.usp −22876.647390 de Vries & Kroon.
8
 3 × 2 × 3 k-point grid (9 points) 

(+)-Ca(C4H4O6)·4H2O H_00PBE.usp; C_00PBE.usp; O_00PBE.usp; Ca_00PBE.usp −24752.791591 Hawthorne et al.
9
 3 × 2 × 3 k-point grid (9 points) 

(±)-Ca(C4H4O6)·4H2O H_00PBE.usp; C_00PBE.usp; O_00PBE.usp; Ca_00PBE.usp −12377.071595 Le Bail et al.
10

 4 × 3 × 3 k-point grid (18 points) 

Ca(C2H3O2)2·H2O 

(1984) 

H_00PBE.usp; C_00PBE.usp; O_00PBE.usp; Ca_00PBE.usp 
−15759.116545 

Klop et al.
11

 4 × 3 × 2 k-point grid (12 points); first 

reported polymorph 

Ca(C2H3O2)2·H2O 

(1987) 

H_00PBE.usp; C_00PBE.usp; O_00PBE.usp; Ca_00PBE.usp 
−15759.250163 

van der Sluis et al.
12

 4 × 3 × 2 k-point grid (12 points); 

second reported polymorph 

CaSO4·2H2O H_00PBE.usp; O_00PBE.usp; S_00PBE.usp; Ca_00PBE.usp −15882.199930 Comodi et al.
13

 4 × 2 × 5 k-point grid (20 points) 

Ca(NO3)2 N_00PBE.usp; O_00PBE.usp; Ca_00PBE.usp −16647.497430 Vegard & Bilberg.
14

 3 × 3 × 3 k-point grid (14 points) 

a All GIPAW DFT geometry optimizations used the PBE XC functional,15,16 as described in the main text.  All calculations used the ‘precise’ setting for the fast Fourier 

transformation grid and Ecut = 800 eV, where Ecut = plane wave basis set energy cut-off.  Optimized structure parameters can be found in Table S6.  In the case of Ca(NO3)2, due to 

the age of the diffraction data (1931 publication), refinement was carried out for the N and O atomic positions.  Basis set convergence was tested and ensured for all systems. 

 



S9 

Table S4. GIPAW DFT magnetic shielding and EFG tensor calculations – pseudopotential files used, energies and structure references
a
 

compound pseudopotential files used
b
 energy / eV structure reference(s) and additional details

c
 

Ca(OH)2 H_00PBE.usp; O_00PBE.usp −1913.572316 Desgranges et al.
17

  Ecut = 1200 eV; 8 × 8 × 6 k-point grid (45 points) 

α-Ca(CHO2)2 H_00PBE.usp; O_00PBE.usp; C_00PBE.usp −24775.852840 Burger et al.
18

  Ecut = 1000 eV; 2 × 2 × 4 k-point grid (2 points) 

β-Ca(CHO2)2 H_00PBE.usp; C_00PBE.usp; O_00PBE.usp −12387.417270 Matsui et al.
6
  Ecut = 1000 eV; 4 × 4 × 3 k-point grid (6 points) 

CaCl2·2H2O H_00PBE.usp; O_00PBE.usp; Cl_00PBE.usp −11060.792100 Leclaire & Borel.
7
  Ecut = 800 eV; 4 × 3 × 2 k-point grid (4 points) 

Ca(C4H4O6)·3H2O H_00PBE.usp; C_00.otfg; O_00PBE.usp −22925.544620 de Vries & Kroon.
8
  Ecut = 1000 eV; 3 × 2 × 3 k-point grid (5 points) 

(+)-Ca(C4H4O6)·4H2O H_00PBE.usp; C_00.otfg; O_00PBE.usp −24801.756070 Hawthorne et al.
9
  Ecut = 1000 eV; 3 × 2 × 3 k-point grid (4 points) 

(±)-Ca(C4H4O6)·4H2O H_00PBE.usp; C_00PBE.usp; O_00PBE.usp −12380.666253 Le Bail et al.
10

  Ecut = 1000 eV; 4 × 3 × 3 k-point grid (18 points) 

Ca(C2H3O2)2·H2O 

(1984) 

H_00PBE.usp; C_00.otfg; O_00PBE.usp 
−15807.731070 

Klop et al.
11

  Ecut = 1000 eV; 4 × 3 × 2 k-point grid (12 points); first 

reported polymorph 

Ca(C2H3O2)2·H2O 

(1987) 

H_00PBE.usp; C_00.otfg; O_00PBE.usp 
−15807.859863 

van der Sluis et al.
12

  Ecut = 1000 eV; 4 × 3 × 2 k-point grid (12 

points); second reported polymorph 

CaSO4·2H2O H_00PBE.usp; O_00.otfg; S_00.otfg −8006.500243 Comodi et al.
13

  Ecut = 1000 eV; 5 × 5 × 5 k-point grid (39 points) 

CaCrO4 O_00PBE.usp; Cr_00.otfg −20813.186909 Weber & Range.
19

  Ecut = 1000 eV; 3 × 3 × 3 k-point grid (6 points) 

CaTiO3 O_00.otfg; Ti_00.otfg −15709.186466 Ali & Yashima.
20

  Ecut = 1000 eV; 5 × 5 × 3 k-point grid (18 points) 

Ca(NO3)2 
N_00PBE.usp; O_00PBE.usp 

−16648.449486 
Vegard & Bilberg.

14
  Ecut = 1000 eV; 4 × 4 × 4 k-point grid (4 points); 

exactly as reported. 

Ca(NO3)2 
N_00PBE.usp; O_00PBE.usp 

−16650.782485 
Vegard & Bilberg.

14
  Ecut = 1000 eV; 4 × 4 × 4 k-point grid (4 points); 

geometry optimized N and O atoms. 

CaH2 H_00PBE.usp −4146.372463 Alonso et al.
21

  Ecut = 1000 eV; 4 × 7 × 4 k-point grid (16 points) 

a All GIPAW DFT computations of EFG and magnetic shielding tensor parameters used the PBE XC functional, as described in the main text.  Full details of the computed 

parameters can be found in Table S5.  All calculations used the ‘precise’ setting for the fast Fourier transformation grid. 
b The updated string was used for the generation of the calcium pseudopotential in all calculations (i.e., Ca_01.otfg).  In the format used by Materials Studio, it is 

“3|1.6|2|1.4|7.5|9.2|10.3|30U=-1.72:40U=-0.14:31U=-1.03U=+0.25:32U=+0U=+1[]”. 
c Ecut = plane wave basis set energy cut-off.  Basis set convergence was tested and ensured for all systems. 
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Table S5. GIPAW DFT computed calcium EFG and magnetic shielding tensor parameters – additional information
a
 

compound 
site 

label 

V11 

/ a.u. 

V22 

/ a.u. 

V33 

/ a.u. 

CQ(X) 

/ MHz 
ηQ 

σ11 

/ ppm 

σ22 

/ ppm 

σ33 

/ ppm 

Ω 

/ ppm 
κ 

δiso
b
 

/ ppm 

Ca(OH)2 ― −0.1093 −0.1093 0.2185 −2.283 0.000 1018.17 1056.61 1056.65 38.48 −0.998 71.93 

α-Ca(CHO2)2 ― −0.0068 −0.1277 0.1345 −1.405 0.899 1096.63 1114.25 1126.26 29.63 −0.190 14.10 

β-Ca(CHO2)2 ― −0.0901 −0.1836 0.2737 −2.859 0.342 1111.19 1129.67 1151.95 40.76 0.094 −1.55 

CaCl2·2H2O ― 0.1298 0.1894 −0.3192 3.335 0.187 1042.23 1051.19 1067.70 25.47 0.296 63.58 

Ca(C4H4O6)·3H2O ― 0.0389 0.1217 −0.1660 1.734 0.499 1080.19 1099.73 1116.65 36.46 −0.072 25.51 

(+)-Ca(C4H4O6)·4H2O ― −0.0203 −0.0889 0.1092 −1.141 0.628 1106.70 1124.75 1136.66 29.96 −0.205 5.40 

(±)-Ca(C4H4O6)·4H2O ― 0.0136 0.0808 −0.0943 0.985 0.713 1116.77 1121.03 1133.72 16.96 0.497 4.43 

Ca(C2H3O2)2·H2O 

(1984)
 

1 −0.0582 −0.1254 0.1836 −1.918 0.366 1113.78 1146.02 1152.49 38.70 −0.666 −7.03 

2 −0.0595 −0.0699 0.1294 −1.352 0.080 1095.38 1110.88 1118.06 22.67 −0.367 17.71 

Ca(C2H3O2)2·H2O 

(1987)
 

1 −0.0643 −0.0874 0.1517 −1.585 0.152 1111.31 1149.25 1154.86 43.55 −0.743 −7.90 

2 −0.0322 −0.1425 0.1748 −1.826 0.631 1093.67 1116.22 1125.06 31.38 −0.437 14.72 

CaSO4·2H2O ― −0.0001 −0.1389 0.1390 −1.452 0.999 1119.51 1161.03 1177.15 57.64 −0.441 −19.79 

CaCrO4 ― −0.0644 −0.0644 0.1288 −1.346 0.000 1146.23 1232.05 1232.05 85.82 −1.000 −62.70 

CaTiO3 ― 0.0299 0.1585 −0.1884 1.968 0.683 1076.22 1096.40 1145.84 69.62 0.420 19.35 

Ca(NO3)2 (original) ― 0.1665 0.1665 −0.3331 3.480 0.000 1174.43 1174.43 1213.81 39.38 1.000 −49.30 

Ca(NO3)2 (N,O opt) ― 0.1301 0.1301 −0.2602 2.718 0.000 1192.22 1192.22 1219.86 27.64 1.000 −61.00 

CaH2 ― 0.0082 0.1007 −0.1089 1.138 0.849 971.69 981.41 1006.97 35.28 0.449 120.10 

a Q(43Ca) = −4.44(6) × 10−30 m2 using the updated value in ref. 22.  To convert V33(
43Ca) into frequency units, a conversion factor of −10.446534 MHz/a.u. was used where the unit 

EFG is 9.71736166 × 1021 J C−1 m−2. 
b To map calculated magnetic shielding (σ) values into chemical shift (δ) values, the result of Moudrakovski et al. is used, as specified in ref. 23: δiso (ppm) = (1129.1 − σiso 

(ppm))/(1.1857). 
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Table S6. Atomic coordinates used for GIPAW DFT quantum chemical computations 

atom 
Wyckoff 

position 

site 

symmetry 
X

a
 Y

a
 Z

a
 

Ca(OH)2
b
 

Ca 1a  ̅  0.0000 0.0000 0.0000 

O 2d 3m 0.3333 0.6666 −0.2337 

H 2d 3m 0.3333 0.6666 −0.4224 

α-Ca(CHO2)2
c
 

Ca 8c 1 −0.1345 −0.1073 −0.0277 

O 8c 1 −0.0357 0.0473 −0.1906 

O 8c 1 −0.2014 −0.0144 −0.3665 

O 8c 1 −0.2001 −0.2014 0.2848 

O 8c 1 −0.0236 −0.2981 0.2894 

C 8c 1 −0.1130 0.0489 −0.3444 

C 8c 1 −0.1260 −0.2659 0.3683 

H 8c 1 −0.6013 −0.1071 −0.0369 

H 8c 1 −0.6555 −0.7059 −0.0224 

β-Ca(CHO2)2
d
 

Ca 4a 2 0.2169 0.2169 0.0000 

O 8b 1 0.2766 0.0651 0.2353 

O 8b 1 0.2813 0.3793 0.2851 

C 8b 1 0.3039 0.2061 0.3170 

H
e
 8b 1 0.3545 0.1703 0.4261 

CaCl2·2H2O
f
 

Ca 4c 2 0.0000 0.2157 0.2500 

Cl 8d 1 −0.2725 0.4509 0.1380 

O 8d 1 0.2645 0.2107 0.1082 

H
e
 8d 1 0.4133 0.2713 0.1136 

H
e
 8d 1 0.2614 0.1496 0.0355 

Ca(C4H4O6)·3H2O
g
 

Ca 4e 1 0.1867 0.0692 0.2141 

C 4e 1 0.2747 0.8286 0.0231 

C 4e 1 0.1955 0.7540 0.1339 

C 4e 1 0.0918 0.6476 0.0756 

C 4e 1 −0.0528 0.7098 0.0182 

O 4e 1 0.2654 0.9515 0.0253 

O 4e 1 0.3460 0.7640 −0.0595 
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atom 
Wyckoff 

position 

site 

symmetry 
X

a
 Y

a
 Z

a
 

O 4e 1 0.1155 0.8426 0.2150 

O 4e 1 0.0515 0.5574 0.1778 

O 4e 1 −0.1712 0.6945 0.0803 

O 4e 1 −0.0387 0.7761 −0.0877 

O 4e 1 0.3954 0.9859 0.3387 

O 4e 1 0.3649 0.2200 0.1316 

O 4e 1 0.3131 0.4605 0.2718 

H
e 4e 1 0.2843 0.7054 0.1956 

H
e 4e 1 0.1492 0.5976 −0.0063 

H
e 4e 1 0.0676 0.7946 0.2909 

H
e 4e 1 0.1465 0.5147 0.2146 

H
e 4e 1 0.4983 0.9859 0.3034 

H
e 4e 1 0.3831 0.9020 0.3863 

H
e 4e 1 0.3147 0.2554 0.0478 

H
e 4e 1 0.4733 0.2104 0.1106 

H
e 4e 1 0.3081 0.4800 0.3715 

H
e 4e 1 0.3214 0.3659 0.2571 

(+)-Ca(C4H4O6)·4H2O
h
 

Ca 4a 1 0.3177 0.6772 0.1865 

C 4a 1 0.6495 0.7027 0.1085 

C 4a 1 0.6596 0.7273 0.2716 

C 4a 1 0.7219 0.8584 0.2971 

C 4a 1 0.7385 0.8928 0.4577 

O 4a 1 0.5316 0.6730 0.0578 

O 4a 1 0.7584 0.7154 0.0377 

O 4a 1 0.5263 0.7157 0.3369 

O 4a 1 0.6416 0.9545 0.2268 

O 4a 1 0.7628 0.8086 0.5481 

O 4a 1 0.7319 1.0103 0.4850 

O 4a 1 0.8360 0.5901 0.7735 

O 4a 1 0.4345 0.3304 0.6933 

O 4a 1 0.5855 0.4270 0.9254 

O 4a 1 0.4242 0.0635 0.9299 

H
e
 4a 1 0.8045 0.5534 0.8660 

H
e 4a 1 0.9367 0.5703 0.7684 
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atom 
Wyckoff 

position 

site 

symmetry 
X

a
 Y

a
 Z

a
 

H
e 4a 1 0.4904 0.3489 0.7819 

H
e 4a 1 0.4840 0.2704 0.6295 

H
e 4a 1 0.5507 0.5058 0.9707 

H
e 4a 1 0.6052 0.3669 1.0041 

H
e 4a 1 0.4712 −0.0137 0.8947 

H
e 4a 1 0.3403 0.0739 0.8704 

H
e 4a 1 0.7316 0.6569 0.3168 

H
e 4a 1 0.8279 0.8582 0.2513 

H
e 4a 1 0.5372 0.6664 0.4288 

H
e 4a 1 0.6862 0.9656 0.1258 

(±)-Ca(C4H4O6)·4H2O
i
 

Ca 2i 1 0.6596 0.8099 0.7262 

O 2i 1 0.3163 0.9767 1.0927 

O 2i 1 1.1726 0.9733 1.3928 

O 2i 1 0.9111 1.0269 1.1676 

O 2i 1 0.6207 1.0217 1.3327 

O 2i 1 0.9267 0.7075 1.3736 

O 2i 1 0.2977 0.7032 1.0343 

O 2i 1 0.3993 0.6866 0.4955 

O 2i 1 0.8583 0.6536 0.6164 

O 2i 1 0.3111 0.6239 0.7705 

O 2i 1 0.8104 0.6476 0.8984 

C 2i 1 0.9834 0.8492 1.3352 

C 2i 1 0.3817 0.8494 1.1127 

C 2i 1 0.8071 0.8711 1.2081 

C 2i 1 0.5809 0.8668 1.2429 

H
e
 2i 1 0.3207 0.5600 0.4553 

H
e
 2i 1 0.2647 0.7291 0.4669 

H
e
 2i 1 0.8879 0.6901 0.5322 

H
e
 2i 1 1.0167 0.6612 0.6765 

H
e
 2i 1 0.3097 0.6437 0.8657 

H
e
 2i 1 0.2381 0.4969 0.7322 

H
e
 2i 1 0.9834 0.6730 0.9411 

H
e
 2i 1 0.7381 0.5266 0.9086 

H
e
 2i 1 0.7602 0.7577 0.1277 
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atom 
Wyckoff 

position 

site 

symmetry 
X

a
 Y

a
 Z

a
 

H
e
 2i 1 0.5256 0.7520 0.2890 

H
e
 2i 1 0.6838 1.0094 0.4292 

H
e
 2i 1 0.8290 1.0227 0.0689 

Ca(C2H3O2)2·H2O (1984)
j 
 

Ca 2i 1 0.2263 0.0572 −0.0726 

Ca 2i 1 0.4048 0.1731 0.2904 

O 2i 1 0.0961 −0.1083 0.0054 

O 2i 1 0.4093 −0.0438 0.0916 

O 2i 1 0.4341 0.4095 0.3133 

O 2i 1 0.3565 0.2425 0.1211 

O 2i 1 0.2276 0.1786 −0.1851 

O 2i 1 0.3780 0.1730 −0.3481 

O 2i 1 −0.0519 −0.1330 −0.2637 

O 2i 1 0.2666 −0.1511 −0.2532 

O 2i 1 0.4658 0.3125 0.5130 

O 2i 1 0.3790 0.0100 0.3697 

C 2i 1 0.2511 −0.1316 0.0489 

C 2i 1 0.2480 −0.2669 0.0480 

C 2i 1 0.3767 0.3680 0.1989 

C 2i 1 0.3300 0.4651 0.1485 

C 2i 1 0.2459 0.2046 −0.2750 

C 2i 1 0.1010 0.2880 −0.2930 

C 2i 1 0.0875 −0.1999 −0.3007 

C 2i 1 0.0450 −0.3454 −0.4001 

H
e
 2i 1 0.4407 0.2678 0.5695 

H
e 2i 1 0.5020 0.4126 0.5704 

H
e 2i 1 0.4684 −0.0610 0.3526 

H
e 2i 1 0.3548 0.0446 0.4597 

H
e 2i 1 0.3818 0.7311 0.1023 

H
e 2i 1 0.4712 0.5220 0.1419 

H
e 2i 1 0.1316 0.3148 0.6299 

H
e 2i 1 −0.1102 0.6244 0.5551 

H
e 2i 1 0.2398 0.6541 −0.0514 

H
e 2i 1 0.2466 0.5412 0.2142 

H
e 2i 1 0.1044 0.3821 0.7963 
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atom 
Wyckoff 

position 

site 

symmetry 
X

a
 Y

a
 Z

a
 

H
e 2i 1 0.0730 0.5896 0.6452 

H
e 2i 1 0.1117 0.7090 0.0864 

Ca(C2H3O2)2·H2O (1987)
k
 

Ca 2i 1 0.2187 0.0573 0.4037 

Ca 2i 1 0.5418 0.3341 0.4151 

O 2i 1 0.6060 0.1839 0.6029 

O 2i 1 0.5656 0.4128 0.5987 

O 2i 1 0.2129 0.3036 0.4180 

O 2i 1 0.8995 0.2930 0.3902 

O 2i 1 0.5829 0.0746 0.3973 

O 2i 1 0.9174 −0.0310 0.4035 

O 2i 1 0.2041 0.1135 0.2138 

O 2i 1 0.2040 0.3268 0.1156 

O 2i 1 0.5169 0.3717 0.2233 

O 2i 1 0.7768 0.4994 0.0896 

C 2i 1 0.6034 0.2855 0.6524 

C 2i 1 0.6413 0.2549 0.7745 

C 2i 1 1.0275 0.3655 0.3874 

C 2i 1 0.9641 0.5246 0.3456 

C 2i 1 0.7498 0.0131 0.3515 

C 2i 1 0.7467 −0.0081 0.2348 

C 2i 1 0.1916 0.1993 0.1251 

C 2i 1 0.1483 0.1519 0.0227 

H
e
 2i 1 0.6021 0.4192 0.1666 

H
e
 2i 1 0.4005 0.3562 0.1850 

H
e
 2i 1 0.7722 0.5638 0.0154 

H
e
 2i 1 0.9241 0.4434 0.1002 

H
e
 2i 1 0.5095 0.7348 0.1818 

H
e
 2i 1 0.2612 0.8556 0.1993 

H
e
 2i 1 0.2927 0.6651 0.2015 

H
e
 2i 1 0.2017 0.0342 0.0301 

H
e
 2i 1 0.2173 0.2041 −0.0516 

H
e
 2i 1 −0.0210 0.1856 0.0102 

H
e
 2i 1 0.1452 0.4212 0.5951 

H
e
 2i 1 −0.0982 0.4314 0.6649 
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atom 
Wyckoff 

position 

site 

symmetry 
X

a
 Y

a
 Z

a
 

H
e
 2i 1 0.1175 0.4522 0.7335 

H
e
 2i 1 0.1783 1.1219 0.7699 

H
e
 2i 1 0.4112 0.9755 0.7973 

H
e
 2i 1 0.1591 0.9445 0.8169 

CaSO4·2H2O
l
 

Ca 4e 2 0.0000 0.1705 0.2500 

S 4e 2 0.0000 0.3273 0.7500 

O 8f 1 0.0832 0.2722 0.5910 

O 8f 1 0.2000 0.3819 0.9130 

O 8f 1 −0.2082 0.0683 −0.0783 

H
e
 8f 1 0.7467 0.0883 0.7414 

H
e
 8f 1 0.7590 0.0046 0.9130 

CaCrO4
m
 

Ca 4a  ̅   0.0000 0.7500 0.1250 

Cr 4b  ̅   0.0000 0.2500 0.3750 

O 16h m 0.0000 0.5694 0.7849 

CaTiO3
n
 

Ca 4c m −0.0078 0.0357 0.2500 

Ti 4b  ̅ 0.0000 0.5000 0.0000 

O 4c m 0.0736 0.4828 0.2500 

O 8d 1 0.7113 0.2893 0.0375 

Ca(NO3)2
o
 (original) 

Ca 4a  ̅ 0.0000 0.0000 0.0000 

N 8c 3 0.3390 0.3390 0.3390 

O 24d 1 0.2530 0.2930 0.4670 

Ca(NO3)2 (N, O opt) 

Ca 4a  ̅ 0.0000 0.0000 0.0000 

N
e
 8c 3 0.3378 0.3378 0.3378 

O
e
 24d 1 0.2555 0.2837 0.4732 

CaH2
p
 

Ca 4c m 0.2424 0.2500 0.1086 

H 4c m 0.3543 0.2500 0.4264 

H 4c m −0.0273 0.2500 0.6775 

a Values in these columns are in fractional unit cell units. 
b Structure obtained from ref. 17.    ̅  ; a = b = 3.589 Å; c = 4.911 Å; α = β = 90°; γ = 120°; V = 54.78 Å3; Z = 1. 
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c Structure obtained from the CSD, as reported by Burger et al.18  CSD identity code: CAFORM02.  Pcab; a = 10.168 Å; b = 

13.407 Å; c = 6.278 Å; α = β = γ = 90°; V = 855.83 Å3; Z = 8.  We note here that the structure in the CSD does not agree fully 

with the reference account.  In short, while the unit cell parameters are consistent with the experimental measurements reported at 

T = 296 K in the reference account, the atomic coordinates in CAFORM02 correspond to those measured at T = 100 K (from the 

same reference).  We report calculations using the unit cell and atomic coordinates measured at T = 296 K. 
d Structure obtained from the CSD, as reported by Matsui et al.6  CSD identity code: CAFORM05.  P41212; a = b = 6.776 Å; c = 

9.453 Å; α = β = γ = 90°; V = 434.03 Å3; Z = 4.  Note: in the same literature account, a second structure under very similar 

measurement conditions was presented (CAFORM06).  Relative to what we present above, we obtain very similar NMR tensor 

parameters using the H-optimized structure of CAFORM06 and hence we omit it from further discussion. 
e Atomic positions have been optimized computationally, with computational details provided in Table S3. 
f Structure obtained from ref. 7.  Pbcn; a = 5.893 Å; b = 7.469 Å; c = 12.070 Å; α = β = γ = 90°; V = 531.26 Å3; Z = 4. 
g Structure obtained from the CSD, as reported by de Vries and Kroon.8  CSD identity code: CIRZAE.  P21/c; a = 8.921 Å; b = 

10.300 Å; c = 9.881 Å; α = γ = 90°; β = 91.78°; V = 907.49 Å3; Z = 4. 
h Structure obtained from the CSD, as reported by Hawthorne et al.9  CSD identity code: CATART01.  P212121; a = 9.631 Å; b = 

10.573 Å; c = 9.215 Å; α = β = γ = 90°; V = 938.35 Å3; Z = 4. 
i Structure obtained from ref. 10.    ̅; a = 6.241 Å; b = 8.214 Å; c = 10.411 Å; α = 94.92°; β = 106.00°; γ = 107.55°; V = 480.78 

Å3; Z = 2. 
j Structure obtained from the CSD, as reported by Klop et al.11  CSD identity code: CEJLIM.    ̅; a = 6.750 Å; b = 11.076 Å; c = 

11.782 Å; α = 116.49°; β = 92.40°; γ = 97.31°; V = 777.13 Å3; Z = 4. 
k Structure obtained from ref. 12.    ̅; a = 6.700 Å; b = 9.801 Å; c = 12.257 Å; α = 78.83°; β = 86.21°; γ = 73.63°; V = 757.6 Å3; 

Z = 4. 
l Structure obtained from ref. 13.  C2/c; a = 6.277 Å; b = 15.181 Å; c = 5.672 Å; α = γ = 90°; β = 114.11°; V = 493.34 Å3; Z = 4. 
m Structure obtained from the ICSD, as reported by Weber and Range.19  ICSD identity code: 83387.  I41/amd; a = b = 7.222 Å; c 

= 6.285 Å; α = β = γ = 90°; V = 327.81 Å3; Z = 4. 
n Structure obtained from the ICSD, as reported by Ali and Yashima.20  ICSD identity code: 153172.  Pbnm; a = 5.3789 Å; b = 

5.4361 Å; c = 7.6388 Å; α = β = γ = 90°; V = 223.36 Å3; Z = 4. 
o Structure obtained from the ICSD, as reported by Vegard and Bilberg.14  ICSD identity code: 52351.     ̅; a = b = c = 7.615 Å; 

α = β = γ = 90°; V = 441.58 Å3; Z = 4. 
p Structure obtained from the ICSD, as reported by Alonso et al.21  ICSD identity code: 260873.  Pnma; a = 5.9600 Å; b = 3.6006 

Å; c = 6.8167 Å; α = β = γ = 90°; V = 146.28 Å3; Z = 4. 
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Figure S1. Analytical line shape simulations (a, d – j), and experimental Bloch decay 
43

Ca MAS (νMAS = 5.00 kHz) 

SSNMR spectrum of Ca(OH)2 acquired at B0 = 21.1 T (b, k).  The experimental spectrum is the result of the 

collection of 6 830 transients with a recycle delay of 10.0 s (experiment time = 19.0 h).  In (c), the difference 

spectrum between (a) and (b) is presented.  Analytical line shape simulations (d – j) illustrate the sensitivity of the 

line shape models to small changes in the calcium δiso.  For these line shape simulations, all parameters are kept 

constant, except the value of δiso, which is varied as follows: (d) 68.6 ppm; (e) 69.2 ppm; (f) 69.8 ppm; (g) 70.4 ppm 

(best fit, same as (a)); (h) 71.0 ppm; (i) 71.6 ppm; (j) 72.2 ppm.  The dashed lines are guides for the eye. 

 

Figure S1. Analytical line shape simulation (a) and experimental (b) Bloch decay 43Ca MAS (νMAS = 5.00 kHz) SSNMR spectrum of 

Ca(OH)2, acquired at B0 = 21.1 T.  The experimental spectrum is the result of collecting 6830 transients with a recycle delay of 10.0 s.  In 

(c), the difference spectrum between (a) and (b) is presented. 
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Figure S2. Schematic highlighting the relationship between the Euler angles (i.e., α, β, γ), and the relative 

orientation between the CS and EFG tensor PASs (illustration inspired by Eichele
24

).  The angle of each 

counterclockwise rotation is determined by the value of each Euler angle and occurs in the order α → β → γ.  The 

convention used here assumes the EFG tensor PAS is static, while the CS tensor PAS is active.  The eigenvectors 

shown (i.e., V11, δ11, etc.,) are associated with the tensor eigenvalues specified in Table S5. 

 

 

 

 

Figure S3. Experimental Bloch decay 
43

Ca SSNMR spectrum of Ca(OH)2 acquired at B0 = 11.75 T under static 

conditions.  The spectrum is the result of the collection of 63 228 transients with a recycle delay of 4.0 s (experiment 

time = 70.3 h).  The calcium chemical shift scale is relative to a saturated solution of CaCl2(aq). 

Figure 2.12 – corrected fonts 
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300 200 100 0 −100 −200 δ/ppm 



S20 

 

Figure S4. Experimental 
43

Ca{
1
H} CP/static SSNMR spectra of Ca(OH)2, acquired at B0 = 21.1 T, which illustrate 

the sensitivity of the experiment to variation in the radiofrequency field applied on the calcium channel during the 

cross-polarization contact period.  All other relevant experimental parameters are kept constant and are as specified 

in Table S1.  The radiofrequency field applied to the calcium channel is specified on the right portion of the figure.  

The dashed line is a guide to the eye and highlights additionally how certain crystallite orientations (manifested 

experimentally as signal at different resonance frequencies) are affected preferentially based upon the rf field 

applied to the calcium channel. 

 

 

 

Calcium Hydroxide Ca(OH)2 

Dec. 9 2010, 900 MHz, 7 mm static 

probe, 2 s pd, CP + 1H dec. 

Ref. to 2 M CaCl2 (aq) 

 
Other important params: 
1H pulse rf: 27.8 kHz; 

contact time: 20 ms; 
1H contact rf: 24.8 kHz; 
43Ca contact rf: various (see figure); 
1H spinal-64 decoupling rf: 19.2 kHz 
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Figure S5. Experimental 
43

Ca CP/static SSNMR spectra of Ca(OH)2, acquired at B0 = 21.1 T, which illustrate the 

effects of 
1
H decoupling during the acquisition period.  The black trace corresponds to the 

1
H-decoupled spectrum 

(SPINAL64, νrf{
1
H} = 19.2 kHz), while the red trace conserves all experimental parameters (please note the number 

of transients varies between the traces), except no 
1
H decoupling field is applied during the 

43
Ca signal acquisition 

period. 

 

 

Figure S6. POV-Ray rendering of the computed calcium EFG tensor (Vii, i = 1, 2, 3, in blue) and symmetric 

magnetic shielding (σii, orange) tensor eigenvectors for Ca(OH)2, highlighting both the unit cell and calcium first 

coordination sphere.  Colour scheme remains as defined in the main paper.  The eigenvectors are displayed once for 

each unique calcium, and were placed using Diamond v. 3.2i.  When an EFG eigenvector overlaps with a shielding 

eigenvector, they are displayed in green.  As ηQ = 0 and κ = −1, V11 and V22 are interchangeable, as are σ22 and σ33; 

indeed, these eigenvectors span a plane of equivalent EFG, and equivalent magnetic shielding, respectively. 

 

Calcium Hydroxide Ca(OH)2 

Dec. 9 2010, 900 MHz, 7 mm static probe, 2 s pd, CP + 1H dec. 

Ref. to 2 M CaCl2 (aq) 

 
Other important params: 
1H pulse rf: 27.8 kHz; 

contact time: 20 ms; 
1H contact rf: 24.8 kHz; 
43Ca contact rf: 6.4 kHz; 
1H spinal-64 decoupling rf: 19.2 kHz (black 

solid trace) or none (red dotted trace) 
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Figure S7. Experimental 
13

C CP/MAS SSNMR spectrum of α-Ca(CHO2)2, acquired at B0 = 9.4 T and νMAS = 5.0 

kHz.  Asterisks denote MAS spinning sidebands.  Isotropic region has been expanded and inset, and measured 

chemical shifts are indicated. 

 

 

 

Figure S8. Analytical line shape simulations (a, d), and experimental Bloch decay 
43

Ca MAS (νMAS = 5.00 kHz) 

SSNMR spectra of α-Ca(CHO2)2 acquired at B0 = 21.1 T (b), and B0 = 9.4 T (e).  The experimental spectra result 

from the collection of 4 096 transients with a recycle delay of 5.0 s in (b), and from the collection of 21 144 

transients with a recycle delay of 10.0 s in (e), which infers experiment times of 5.7 h and 58.7 h, respectively.  In 

(c) and (f), the appropriate difference spectra between the experimental and simulation spectra are provided. 
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Figure S9. Experimental Bloch decay 
43

Ca SSNMR spectrum of CaCl2·2H2O acquired at B0 = 11.75 T under static 

conditions.  The spectrum is the result of the collection of 47 787 transients with a recycle delay of 5.0 s (experiment 

time = 66.4 h).  The calcium chemical shift scale is relative to a saturated solution of CaCl2(aq). 

 

 

 

 

Figure S10. Experimental 
13

C CP/MAS SSNMR spectrum of (±)-Ca(C4H4O6)·4H2O, acquired at B0 = 9.4 T and 

νMAS = 5.0 kHz.  Asterisks denote MAS spinning sidebands.  Isotropic region has been expanded and inset, and 

measured chemical shifts are indicated.  All observed 
13

C chemical shifts for this sample are distinct from DL-tartaric 

acid.  

 

 

Calcium Chloride Dihydrate CaCl2·2H2O 

Feb. 16 2007, 500 MHz, 10 mm, 47 787 scans, 5 s pd 
ref to sat. CaCl2 (aq) 
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Figure S11. Experimental powder XRD results of (±)-Ca(C4H4O6)·4H2O (bottom trace), along with the simulated 

diffraction pattern which is expected to result based upon the published structure of Le Bail et al.
10

  The agreement 

is substantially better relative to the case where the other known form
9,25,26

 of (+)-Ca(C4H4O6)·4H2O is assumed. 

× 6 
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Figure S12. Analytical line shape simulations (a – c) and experimental 
43

Ca SSNMR spectrum (d) of (±)-

Ca(C4H4O6)4H2O under static conditions at B0 = 21.1 T.  The difference spectra in (e), (f), and (g) are generated by 

taking the difference between (a) and (d), (b) and (d), and (c) and (d), respectively, and are meant to highlight the 

goodness of the extracted 
43

Ca NMR tensor parameters.  The simulated spectrum in (c) corresponds to the best fit to 

the experimental data, and uses the parameters reported in Table 2 of the main text.  Simulated spectra in (a) and (b) 

retain the same parameters as in (c), except that in (a) Ω = 27 ppm and in (b) β = 90°, and which were chosen as 

these values lie just outside the reported error region. 
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Figure S13. Analytical line shape simulations (a, c, e), experimental FSG-RAPT 
43

Ca MAS SSNMR spectrum (b) 

under νMAS = 5.0 kHz, and experimental Hahn echo 
43

Ca{
1
H} static SSNMR spectrum (d) at B0 = 9.4 T of enriched 

(ca. 7 %) 
43

Ca(C2H3O2)2·H2O.  The experimental spectrum in (b) results from the collection of 768 transients with a 

recycle delay of 9.0 s for an experimental time of 1.9 hours, while that in (d) is from 4 096 transients with a recycle 

delay of 9.0 s (10.2 h).  A deconvolution of the two sites is provided in (e). 

 

 

Figure S14. Experimental 
13

C CP/MAS SSNMR spectrum of Ca(C2H3O2)2·H2O, acquired at B0 = 4.7 T and νMAS = 

5.0 kHz.  Isotropic regions have been expanded, inset, and measured chemical shifts are indicated. 
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Figure S15. Experimental powder XRD results of Ca(C2H3O2)2·H2O (bottom trace), along with the simulated 

diffraction pattern which is expected to result based upon the published structure of Klop et al.
11

  The present 

agreement is much better relative to the case where the other known polymorphic form
12

 of Ca(C2H3O2)2·H2O is 

used. 

 

Figure S16. Experimental 
13

C CP/MAS SSNMR spectrum of Ca(C5H7O3)2·2H2O, acquired at B0 = 9.4 T and νMAS = 

5.5 kHz.  Asterisks denote spinning sidebands. 
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Figure S17. Experimental powder XRD results of CaSO4·2H2O (bottom trace), along with the simulated diffraction 

pattern which is expected to result based upon the published structure of Comodi et al.
13

  The present agreement is 

much better relative to the case where the other suggested structures of CaSO4·2H2O are used,
27

 notably, the 

experimental absence of a very strong diffraction peak near 2θ = 16.5°, which is found in the calculated diffraction 

patterns using these other suggested crystal structures. 

 

 

 

Figure S18. Analytical line shape simulations (a, c), experimental DFS/echo 
43

Ca MAS (νMAS = 5.00 kHz, b), and 

experimental Hahn echo 
43

Ca{
1
H} static (d) SSNMR spectra of enriched 

43
Ca

33
SO4·2H2O (ca. 7 % 

43
Ca), acquired at 

B0 = 9.4 T.  The experimental spectra result from the collection of 32 transients with a recycle delay of 250 s in (b) 

(experimental time = 2.2 h), and from the collection of 336 transients with a recycle delay of 180 s in (d) 

(experimental time = 16.8 h). 
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Figure S19. Experimental powder XRD results of CaCrO4 (bottom trace), along with the simulated diffraction 

pattern which is expected to result based upon the published structure of Weber and Range.
19

 

 

 

 

Figure S20. Analytical line shape simulation (a), and experimental Bloch decay 
43

Ca MAS (νMAS = 4.00 kHz, b) 

SSNMR spectrum of CaCrO4 acquired at B0 = 9.4 T.  The experimental spectrum results from the collection of 65 

536 transients with a recycle delay of 2.0 s (experimental time = 36.4 h). 
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Figure S21. Experimental powder XRD results of CaTiO3 (bottom trace), along with the simulated diffraction 

pattern which is expected to result based upon the published structure of Ali and Yahshima.
20

 

 

 

 

 

Figure S22. Analytical line shape simulation (a), and experimental Hahn echo 
43

Ca static SSNMR spectrum (b) of 

CaTiO3 acquired at B0 = 11.75 T.  The experimental spectrum results from the collection of 34 816 transients with a 

recycle delay of 5.0 s (experimental time = 48.4 h). 
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Figure S23. Analytical line shape simulations (a, c), experimental DFS/echo 

43
Ca MAS (νMAS = 5.00 kHz, b), and 

experimental Hahn echo 
43

Ca static (d) SSNMR spectra of enriched 
43

Ca(NO3)2 (ca. 7% 
43

Ca) acquired at B0 = 9.4 T.  

The experimental spectra result from the collection of 64 transients with a recycle delay of 15 s in (b), and from the 

collection of 192 transients with a recycle delay of 15 s in (d) for experimental times of 16 and 48 minutes, 

respectively. 

 

 

 
Figure S24. Experimental powder XRD results of Ca(NO3)2 (bottom trace), along with the simulated diffraction 

pattern which is expected to result based upon the published structure of Vegard and Bilberg.
14

  The structure 

obtained after GIPAW DFT optimization of the N and O atoms did not lead to a significantly altered pXRD 

diffractogram relative to the one displayed above.  

 

 

April 27, 2013, 900 MHz, 7 mm HX static? probe 

Calcium Nitrate, Ca(NO3)2 

Ref. to 2 M CaCl2 (aq)? 

b 

a 

d 

c 

δ/ppm −30 −40 −50 −60 −70 −80 50 0 −50 −100 −150 δ/ppm 

0

1000

2000

3000

4000

5000

10 20 30 40 50 60 70 80

In
te

n
si

ty
 /

 A
rb

. 
U

n
it

s 

2θ / °  



S32 

 

Figure S25. Analytical line shape simulations (a, d), experimental Bloch decay 
43

Ca{
1
H} MAS SSNMR spectrum 

under νMAS = 6.0 kHz and B0 = 11.75 T (b), and 
43

Ca MAS SSNMR spectrum under νMAS = 2.5 kHz and B0 = 9.4 T 

(d) of CaH2, as well as corresponding difference spectra in (c) and (f).  The experimental spectra result from the 

collection of 8 192 transients with a recycle delay of 60 s in (b), and from the collection of 24 576 transients with a 

recycle delay of 10 s in (d) for experimental times of 136.5 hours and 68.3 hours, respectively. 

 

 

Figure S26. Experimental powder XRD results of CaH2 (bottom trace), along with the simulated diffraction pattern 

which is expected to result based upon the published structure of Alonso et al.
21

  A minor (disordered) component is 

clearly visible (2θ = ca. 33°), but its presence clearly does not impact the NMR results discussed herein. 
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Figure S27. Numerical line shape simulation (a), analytical line shape simulation (c), and experimental Bloch decay 

43
Ca MAS SSNMR spectra under νMAS = 3.0 kHz and B0 = 21.1 T (b), and under νMAS = 5.0 kHz and B0 = 11.75 T 

(d) of a natural sample of CaCO3 (aragonite polymorph from clam pearl in (b), and from coral in (d)).  The 

experimental spectra result from the collection of 16 384 transients with a recycle delay of 2.1 s in (b), and from the 

collection of 65 440 transients with a recycle delay of 2.0 s in (d) for experimental times of 9.6 hours and 36.4 

hours, respectively. 

 

 

 

Figure S28. Experimental powder XRD results of natural CaCO3 (aragonite polymorph), along with the simulated 

diffraction pattern which is expected to result based upon the published structure of Caspi et al.
28

  No evidence of 

the calcite (or any other known) polymorph of CaCO3 is observed. 
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Figure S29. Results of GIPAW DFT computations which highlight the subtle changes in the calcium shift tensor 

span value (Ω) to minor alterations in the structural parameters of Ca(OH)2.  The data points indicated in red 

correspond to the Ω calculated using the accepted crystal structure.  Solid data points correspond to lower horizontal 

axis.  Second-degree polynomial line of best fit: Ω = −0.1168(Vcell)
2
 + 1.540(Vcell) – 10.97, R

2
 = 0.999, where Vcell is 

the unit cell volume in Å
3
.  Open data points correspond to upper horizontal axis.  Second-degree polynomial fit: Ω 

= –49.28(rCa-O)
2
 + 251.0(rCa-O) – 279.8; R

2
 = 1.00, where rCa-O is the average calcium-oxygen distance in Å. 

 

 

Figure S30. Results of GIPAW DFT computations which highlight the sensitivity of the isotropic calcium chemical 

shift (a), and the |CQ(
43

Ca)| value (b) to minor alterations in the structural parameters of CaCrO4.  Unit cell volumes 

were changed in an isotropic fashion (i.e., uniform expansion or contraction).  The data points indicated in red 

correspond to the respective parameters calculated using the accepted crystal structure.  Solid data points correspond 

to lower horizontal axis.  Second-degree polynomial lines of best fit: in a, δiso = 0.002395(Vcell)
2
 – 2.206(Vcell) + 

403.2, R
2
 = 0.997; in b, |CQ(

43
Ca)| = 4.610 × 10

–5
(Vcell)

2
 – 0.04264(Vcell) + 10.36, R

2
 = 1.00.  Open data points 

correspond to upper horizontal axis.  Second-degree polynomial fit: in a, δiso = 288.0(rCa-O)
2
 – 1658(rCa-O) + 2269, R

2
 

= 1.00; in b, |CQ(
43

Ca)| = 5.487(rCa-O)
2
 – 31.70(rCa-O) + 46.03, R

2
 = 1.00. 
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