Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

## **Electronic supplementary information**



**Figure S1.** Normalized UV-visible absorption spectra of KM1 in (maxima from left to right) n-hexane, cyclohexane, diethyl ether, 1,4-dioxane, acetonitrile, chloroform, dichloromethane, methanol.



Figure S2. UV-visible absorption spectrum of KM1 in n-hexane measured at 10 concentrations between 70 nM and 24  $\mu$ M.



Figure S3 Pictures of selected MOs of KC3

**Table S1**. Properties of  ${}^{1}\pi\pi^{*}$  states within the first 30 excited states of KM1, calculated at the TDDFT-B3LYP/6-31G\*\* level and used in the SOS calculations. Labels indicate the serial number of each  ${}^{1}\pi\pi^{*}$  state in the general excited state set. State energies (and symmetries) are given in column one. The diagonal elements are the state y-directed dipole moments (in D). The other elements are the transition dipole moments (in D). Polarizations are specified in the last column. For the first 9x9 block see Table 6 of the text.

| E/eV                          | No | 11      | 12      | 13      | 14     | 17      | 18     | 19      | 20     | 21     | 22      | 23      | 24      | 25     | 27      | Pol. |
|-------------------------------|----|---------|---------|---------|--------|---------|--------|---------|--------|--------|---------|---------|---------|--------|---------|------|
| 0                             |    | -2.757  |         |         | -1.546 | -1.737  | -1.034 |         |        | 0.840  |         | -2.083  |         |        | 1.505   | x    |
| $1 {}^{1}A_{1}$               | 0  |         | 0.612   | -0.751  |        |         |        | -0.301  | -1.019 |        | 0.807   |         | 0.439   | -0.230 |         | У    |
| 2.977                         |    |         | 4.262   | -1.028  |        |         |        | -1.040  | -0.327 |        | -0.339  |         | 0.143   | -0.683 |         | х    |
| $1 {}^{1}B_{2}$               | 1  | 1.854   |         |         | -0.146 | 1.783   | -1.423 |         |        | -0.155 |         | -0.449  |         |        | 1.041   | У    |
| 3.336                         |    | -7.927  |         |         | -2.266 | 5.023   | 0.092  |         |        | 0.304  |         | 0.709   |         |        | -0.976  | х    |
| $2 {}^{1}A_{1}$               | 3  |         | -0.402  | -1.527  |        |         |        | -1.404  | -0.875 |        | -1.108  |         | 1.294   | 1.021  |         | У    |
| 4.288                         |    | 1.227   |         |         | -1.922 | -8.532  | -3.690 |         |        | 5.632  |         | 3.320   |         |        | -1.178  | х    |
| $3 {}^{1}A_{1}$               | 4  |         | 1.040   | -0.515  |        |         |        | -0.996  | 1.570  |        | 2.081   |         | 0.175   | 0.387  |         | У    |
| 4.310                         |    |         | -10.908 | 0.750   |        |         |        | 9.939   | -7.671 |        | 0.073   |         | -1.877  | -0.468 |         | х    |
| $2 {}^{1}B_{2}$               | 5  | 0.028   |         |         | -1.173 | 1.284   | 2.788  |         |        | 0.064  |         | -1.423  |         |        | -0.408  | У    |
| 4.408                         |    |         | -5.672  | -6.054  |        |         |        | -15.904 | -4.548 |        | 1.307   |         | -3.647  | 2.171  |         | x    |
| $3 {}^{1}B_{2}$               | 6  | 0.725   |         |         | 0.157  | -2.192  | -1.439 |         |        | -1.815 |         | -1.020  |         |        | 0.303   | У    |
| 4.446                         |    | -10.783 |         |         | -1.122 | -11.619 | 2.731  |         |        | -5.708 |         | -1.557  |         |        | -2.595  | x    |
| $4 {}^{1}A_{1}$               | 7  |         | 0.469   | 0.443   |        |         |        | -1.319  | -1.255 |        | 0.888   |         | -1.760  | 0.877  |         | У    |
| 4.706                         |    | -12.915 |         |         | 5.336  | 10.910  | 8.576  |         |        | 5.908  |         | 1.288   |         |        | -6.632  | x    |
| $5^{1}A_{1}$                  | 8  |         | 2.161   | -0.918  |        |         |        | 1.688   | -0.974 |        | -0.469  |         | -0.658  | 3.878  |         | У    |
| 4.745                         |    |         | 3.329   | 24.507  |        |         |        | -4.160  | -2.807 |        | 10.265  |         | 0.781   | -5.908 |         | x    |
| $4 {}^{1}B_{2}$               | 9  | 0.890   |         |         | -1.918 | -0.236  | 0.232  |         |        | 0.997  |         | 0.956   |         |        | 1.420   | У    |
| 4.760                         |    | 6762    | 6.872   | -12.510 |        |         |        | -6.271  | 5.287  |        | 0.798   |         | -11.755 | -7.282 |         | x    |
| $5 {}^{1}B_{2}$               | 11 | 0.702   |         |         | -0.403 | -0.129  | 0.420  |         |        | 0.360  |         | 0.186   |         |        | 2.606   | У    |
| 4.786                         |    |         |         |         | 27.615 | -7.061  | -1.812 |         |        | 6.470  |         | -9.225  |         |        | 0.239   | x    |
| $6 {}^{1}A_{1}$               | 12 |         | 7.388   | -0.906  |        |         |        | -0.264  | -0.549 |        | 0.566   |         | -0.660  | -0.610 |         | У    |
| 4.846                         |    |         |         |         | 28.474 | 0.928   | 1.588  |         |        | -2.366 |         | 6.643   |         |        | -0.529  | x    |
| $7 {}^{1}A_{1}$               | 13 |         |         | 5.518   |        |         |        | 0.130   | 1.266  |        | 0.605   |         | 1.461   | -0.071 |         | У    |
| 4 866                         |    |         |         |         |        |         |        | -2.577  | -0.415 |        | -6.747  |         | -1.087  | 1.803  |         | x    |
| $6^{1}B_{2}$                  | 14 |         |         |         | 6.168  | 0.160   | 0.048  |         |        | -1.169 |         | -2.101  |         |        | -0.281  | у    |
| 5 662                         |    |         |         |         |        |         |        | 16.759  | 2.874  |        | 2.953   |         | -1.769  | -4.164 |         | x    |
| $7^{1}B_{2}$                  | 17 |         |         |         |        | 5.156   | -2.125 |         |        | 0.301  |         | -0.542  |         |        | -0.055  | y    |
| 5 8 2 7                       | 17 |         |         |         |        |         |        | -3.489  | -8.666 |        | -7.019  |         | 14.991  | -3.684 |         | x    |
| 3.837<br>8 <sup>1</sup> B     | 18 |         |         |         |        |         | 3.830  |         |        | 1.424  |         | 0.370   |         |        | 0.774   | v    |
| 5 9 4 <b>2</b>                | 10 |         |         |         |        |         |        |         |        | 0.326  |         | 0.881   |         |        | -0.471  | v    |
| 0.042                         | 10 |         |         |         |        |         |        | 5.560   | 0 939  | 0.520  | -0.072  | 0.001   | -0.529  | 0 441  | 0.171   |      |
| 0 'A1                         | 19 |         |         |         |        |         |        |         |        | 13 572 |         | -12 429 |         |        | 1.088   | y    |
| 5.93/                         | 30 |         |         |         |        |         |        |         | 4.763  | 15.572 | -1 817  | 12.72)  | 0.437   | 0 366  | -1.000  |      |
| 9 'A <sub>1</sub>             | 20 |         |         |         |        |         |        |         |        |        | 18.054  |         | 0.457   | 0.300  |         | У    |
| 5.964                         |    |         |         |         |        |         |        |         |        | 7 814  | -10.034 | 0.250   | -3.314  | -0.199 | 0.120   | X    |
| 9 <sup>1</sup> B <sub>2</sub> | 21 |         |         |         |        |         |        |         |        | ,      |         | 0.250   |         |        | -0.138  | У    |
| 6.022                         | _  |         |         |         |        |         |        |         |        |        | 6 637   | 0.588   | 1.510   | 0.012  | -1.595  | X    |
| $10^{1}A_{1}$                 | 22 |         |         |         |        |         |        |         |        |        | 0.037   |         | -1.710  | 0.842  |         | У    |
| 6.102                         |    |         |         |         |        |         |        |         |        |        |         | 2 116   | 0.548   | 0.288  |         | X    |
| $10 {}^{1}\text{B}_{2}$       | 23 |         |         |         |        |         |        |         |        |        |         | 5.110   |         |        | -0.563  | У    |
| 6.144                         |    |         |         |         |        |         |        |         |        |        |         |         | 2.00    |        | -2.433  | X    |
| $11 {}^{1}A_{1}$              | 24 |         |         |         |        |         |        |         |        |        |         |         | 3.665   | 0.834  |         | у    |
| 6.201                         |    |         |         |         |        |         |        |         |        |        |         |         |         |        | -21.418 | x    |
| $12 {}^{1}A_{1}$              | 25 |         |         |         |        |         |        |         |        |        |         |         |         | 8.147  |         | у    |
| 6.349                         |    |         |         |         |        |         |        |         |        |        |         |         |         |        | 0.00-   |      |
| $11 \ {}^{1}B_{2}$            | 27 |         |         |         |        |         |        |         |        |        |         |         |         |        | 8.837   |      |

**Table S2.** Values of  $\delta_{\text{TP}}$  (10<sup>5</sup> au) and  $\sigma_{\text{TP}}$  (GM) calculated for the  $g \rightarrow e$  transition neglecting the  $S_{yy}$  element of the TPA tensor, i.e. using the expression  $\delta_{\text{TP}} = 6 \times S_{xx}^2$ 

|            | ŀ             | KM1                  |               | KC3                  | KC2           |                      |  |
|------------|---------------|----------------------|---------------|----------------------|---------------|----------------------|--|
|            | $\delta_{TP}$ | $\sigma_{	ext{TP}}$  | $\delta_{TP}$ | $\sigma_{	ext{TP}}$  | $\delta_{TP}$ | $\sigma_{	ext{TP}}$  |  |
| <i>a</i> ' | 190.5         | $5.52 \times 10^3$   | 332.8         | 8.80x10 <sup>3</sup> | 109.1         | 3.69x10 <sup>3</sup> |  |
| a          | 206.0         | $5.60 \times 10^3$   | 478.4         | $11.09 \times 10^3$  | 103.5         | $3.37 \times 10^3$   |  |
| b          | 142.8         | 3.88x10 <sup>3</sup> | 281.8         | 6.53x10 <sup>3</sup> | 64.6          | $2.10 \times 10^3$   |  |
| С          | 134.4         | $3.65 \times 10^3$   | 281.3         | $6.52 \times 10^3$   | 64.0          | $2.08 \times 10^3$   |  |
| d          | 135.3         | 3.68x10 <sup>3</sup> |               |                      |               |                      |  |
| е          | 55.2          | $1.50 \times 10^3$   | 92.3          | $2.14 \times 10^{3}$ | 20.1          | $0.65 \times 10^3$   |  |

**Table S3.** Values of  $\left[\sigma_{TP}^{g \to c} / \sigma_{TP}^{g \to e}\right]$  100 for KM1, KC3 and KC2 derived from the data of Tables 9,10.

| Method/<br>calculation | KM1  | KC3 | KC2 |
|------------------------|------|-----|-----|
| TSM/a'                 | 10.5 | 2.2 | 4.1 |
| TDDFT-<br>SOS/c        | 2.4  | 0.5 | 1.2 |
| Response<br>Theory/e   | 1.5  | 0.3 | 0.8 |