Electronic Supplementary Information

Electronic Effect of Terminal Acceptor Groups on Organic Donor-Acceptor Small-Molecule Induced Different Memory Models

Haifeng Liua, Hao Zhuanga, Hua Li,*a Jianmei Lua,b and Lihua Wanga

a College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China. Fax: +86 512 65880367; Tel: +86 512 65880368; E-mail: lujm@suda.edu.cn.

b State Key Laboratory of Treatments and Recycling for Organic Effluents by Adsorption in Petroleum and Chemical Industry, Suzhou 215123, P. R. China.

1. NMR Spectra.
Figure S1 1H and 13C NMR spectra of BCz-BT, BCz-NO$_2$ and BCz-CN

2. Thermo gravimetric analysis (TGA).

Figure S2 Thermo gravimetric analysis (TGA) curves of three compounds with a heating rate of 20 C min$^{-1}$ under nitrogen atmosphere.
3. I/t Curves.

Figure S3 Effect of retention time at 1.0 V on OFF and ON states of BCz-BT, BCz-NO$_2$ and BCZ-CN under a constant stress of 1.0 V.

4. I/V Curves of ITO/BCz/Al.
Figure S4: The memory performance of the ITO/BCz/Al device

5. Current models.

Figure S5: OFF and ON states I-V curves of the experimental and fitted data for the memory devices based on BCz-BT, BCz-NO$_2$ and BCZ-CN: (a, b, c) The OFF state with the Ohmic current and SCLC model; (b, d, f) The ON state with the ohmic current model.