Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Manuscript ID:CP-ART-05-2014-002199

Supporting Information Gas Storage Potential of ExBox⁴⁺ and its Li-decorated derivative

Ranjita Das and Pratim Kumar Chattaraj*

Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology

Kharagpur, Kharagpur - 721302, West Bengal, India

*Author for correspondence: Email: <u>pkc@chem.iitkgp.ernet.in</u>

Table S1: Geometrical parameters of hydrogen adsorbed complexes

	C-H bond	C-H bond N-H		Distance between hydrogen and centroid of ring (Å)			Geometrical parameter for ExBox			
System	length range(Å)	bond length (Å)	Pyridinium ring	Phenyl ring (T)	Phenyl ring (S)	C-C bond length (Å)	C-N bond length (Å)	<c-c-c-c (deg)</c-c-c-c 	<n-c-c (deg)</n-c-c 	
(2H2)endo@ExBox4+	2.872-3.090	-	-	-	2.788	1.481	1.495	146.455	110.639	
(3H2)endo@ExBox4+	2.873-3.023	-		2.671	2.814	1.481	1.495	146.768	110.645	
(8H2)exo@ExBox4+	2.978-3.148	2.967	2.690	2.691	2.669	1.481	1.494	146.007	110.585	
(8H ₂) _{exo} +(2H ₂) _{endo} @ExBox ⁴⁺	2.945(2.878) ^a - 3.114(3.103) ^a	2.974	2.670	2.684	2.685 (2.790) ^a	1.480	1.494	145.586	110.470	
(8H ₂) _{exo} +(3H ₂) _{endo} @ExBox ⁴⁺	2.974(2.876) ^a - 3.113(3.011) ^a	2.971	2.683	2.716 (3.457) ^a	2.686 (2.764) ^a	1.480	1.495	146.068	110.517	
(12H ₂) _{exo} @ExBox ⁴⁺	2.975-3.183	3.044	2.689	2.689	2.679	1.481	1.494	146.817	110.603	
(12H ₂) _{exo} +(2H ₂) _{endo} @ExBox ⁴⁺	2.970(2.876) ^a - 3.290(3.117) ^a	3.045	2.686	2.690	2.654 (2.790) ^a	1.481	1.494	145.157	110.112	
(12H ₂) _{exo} +(3H ₂) _{endo} @ExBox ⁴⁺	2.980(2.880) ^a - 3.301(3.004) ^a	3.046	2.699	2.695 (2.678) ^a	2.654 (2.775) ^a	1.480	1.495	145.442	110.465	

a the values in parenthesis indicate the endohedral hydrogen

Table S2: Bond critical point data (a.u.) calculated at wB97x-D/6-311G (d, p) level for hydrogen bound $ExBox^{4+}$ complexes

System	bond type	ρ	$\nabla^2 ho$	G _{bcp}	V _{bcp}	H _{bcp}		
(211) (211) (211)	N-H	0.00375	0.01304	0.00243	-0.00161	0.00083		
$(2\Pi_2)_{endo} @ EXDOX^{**}$	С-Н	0.00608	0.01661	0.00335	-0.00255	0.00080		
	N-H	0.00385	0.01348	0.00252	-0.00167	0.00085		
(3H ₂) _{endo} @ExBox ⁴⁺	C-H	0.00586	0.01620	0.00325	-0.00244	0.00080		
	H-H	0.00025	0.00095	0.00016	-0.00008	0.00008		
3H ₂ @model	N-H	0.00468	0.01601	0.00305	-0.00209	0.00096		
	С-Н	0.00468	0.01526	0.00292	-0.00202	0.00090		
5 H Omedal	С-Н	0.004055	0.01473	0.00275	-0.00182	0.00093		
SH2@model	H-H	0.003183	0.01031	0.00192	-0.00125	0.00066		

Table S3: Energy decomposition analysis (kcal/mol) of $(nM)_{endo/exo}$ @ExBox⁴⁺ (M= H₂, CO; n=2, 8) complexes at B3LYP-D/DZP level

Energy terms	(2H ₂) _{endo} @ExBox ⁴⁺		(8H2)exo@ExF	Box ⁴⁺	(2CO) _{endo} @ExBox ⁴⁺		
	Without	With counter	Without counter	With counter	Without counter	With counter	
	counter ions	ions	ions	ions	ions	ions	
ΔV_{elstat}	-4.61(29.6%)	-2.74(18.4%)	-8.87(20.4%)	-9.79(29.1%)	-18.26(44.8%)	-12.33(37.5%)	
ΔE_{pauli}	7.48	8.04	17.67	15.83	24.36	18.53	
ΔE_{oi}	-5.19(33.2%)	-5.91(39.8%)	-20.5(47.1%)	-11.64(34.6%)	-9.08(22.2%)	-8.22(25%)	
ΔE_{disp}	-5.81(37.2%)	-6.19(41.7%)	-14.12(32.5%)	-12.21(36.3%)	-13.41(33%)	-12.34(37.5%)	
ΔE_{int}	-8.14	-6.8	-25.82	-17.8	-16.39	-14.36	

Table S4: CDA data for gas adsorbed complexes

	d	b	d-b	r
(2H ₂) _{endo} @ExBox ⁴⁺	-0.005	0.005	-0.001	-0.070
(3H ₂) _{endo} @ExBox ⁴⁺	-0.002	0.005	-0.004	-0.094
(8H2)exo@ExBox4+	-0.070	0.008	-0.078	-0.188
(8H ₂) _{exo} +(2H ₂) _{endo} @ExBox ⁴⁺	-0.062	0.012	-0.074	-0.254
(8H ₂) _{exo} +(3H ₂) _{endo} @ExBox ⁴⁺	-0.066	0.011	-0.076	-0.279
(12H ₂) _{exo} @ExBox ⁴⁺	-0.069	0.062	-0.130	-0.244
(12H ₂) _{exo} +(2H ₂) _{endo} @ExBox ⁴⁺	-0.063	0.074	-0.137	-0.316
(12H ₂) _{exo} +(3H ₂) _{endo} @ExBox ⁴⁺	-0.069	0.073	-0.136	-0.339
(CO) _{endo} @ExBox ⁴⁺	0.005	0.013	-0.008	-0.025
(2CO) _{endo} @ExBox ⁴⁺	0.015	0.034	-0.019	-0.100
(3CO) _{endo} @ExBox ⁴⁺	0.019	0.043	-0.024	-0.127

Table S5: Geometrical parameters of CO adsorbed complexes

		Shortest	Shortest	Shortest	Distance	G	eometrical	parameter for E	xBox
System	Shortest C-C bond length (Å)	C-O bond length (Å)	N-C bond length (Å)	N-O bond length (Å)	between CO and centroid of pyridinium ring (Å)	C-C bond lengt h (Å)	C-N bond length (Å)	<c-c-c-c (deg)</c-c-c-c 	<n-c-c (deg)</n-c-c
(CO)endo@ExBox4+	3.493	3.374	3.469	3.387	3.151(3.307) ^a	1.481	1.495	145.558	110.530
(2CO) _{endo} @ExBox ⁴⁺	3.393	3.471	3.463	3.383	3.142(3.293) ^a	1.481	1.495	145.895	110.661
(3CO)endo@ExBox4+	3.397	3.476	3.443	3.388	3.145(3.269) ^a	1.481	1.495	144.083	110.588

a the values in parenthesis indicate the bonding distance of C center of CO from centroid of ring

System	bond type	ρ	$\nabla^2 \rho$	G _{bcp}	V _{bcp}	H _{bcp}
	C-O	0.00421	0.01337	0.00254	-0.00174	0.00080
(CO) @EvDov4+	C-O(pyridinium ring)	0.00429	0.01595	0.00298	-0.00198	0.00100
(CO) _{endo} @EXDOX	C-C	0.00569	0.01604	0.00319	-0.00238	0.00082
	C-C(pyridinium ring)	0.00493	0.01560	0.00301	-0.00212	0.00089
	C-0	0.00417	0.01322	0.00251	-0.00172	0.00079
	C-O(pyridinium ring)	0.00425	0.01535	0.00288	-0.00192	0.00096
(2CO) _{endo} @ExBox ⁴⁺	N-C	0.00485	0.01597	0.00306	-0.00213	0.00093
	C-C	0.00566	0.01591	0.00317	-0.00236	0.00081
	C-C(pyridinium ring)	0.00489	0.01520	0.00294	-0.00208	0.00086
	C-0	0.00409	0.01306	0.00248	-0.00169	0.00079
	C-C	0.01646	0.14705	0.02757	-0.01837	0.00920
	third CO molecule					
	C-0	0.00398	0.01292	0.00244	-0.00165	0.00079
(3CO) _{endo} @ExBox ⁴⁺	C-C	0.00539	0.01545	0.00305	-0.00224	0.00081
	H-C	0.00041	0.00164	0.00028	-0.00015	0.00013
	Interaction between 2CO-3CO					
	C-C	0.00377	0.01241	0.00233	-0.00156	0.00077
	C-0	0.00185	0.00799	0.00141	-0.00083	0.00059

Table S6: Bond critical point data (a.u.) calculated at wB97x-D/6-311G (d, p) level for CO bound ExBox⁴⁺ complexes

Table S7: Adsorption energy (E_{ads} , kcal/mol), reaction enthalpy (Δ H, kcal/mol), HOMO-LUMO gap (HLG, eV) for gas adsorbed ExBox.4Cl calculated at wB97x-D/6-311G (d, p) basis set

System	E _{ads}	ΔΗ	HLG
(2H ₂) _{endo} @ ExBox.4Cl	-3.4	-2.2	5.477
(3H ₂) _{endo} @ ExBox.4Cl	-2.5	-1.3	5.419
(8H ₂) _{exo} @ ExBox.4Cl	-1.5	-0.3	5.492
(12H ₂) _{exo} @ ExBox.4Cl	-1.7	-0.4	5.551
(2CO)endo@ ExBox.4Cl	-5.5	-4.6	5.488

Table S8: Energy decomposition analysis (kcal/mol) of Li_3 model and its gas bound complexes atB3LYP-D/DZP level

Energy terms	Li ₃ m	odel	211 @I : model	3CO@Li ₃ model	
	Without counter ions	With counter ions	SH ₂ (<i>u</i>)Ll ₃ inouel		
ΔV_{elstat}	-257.59(40.8%)	-293.99(47.4%)	-15.21(39.3%)	-22.05(37.7%)	
ΔE_{pauli}	455.06	491.85	8.07	15.09	
ΔE_{oi}	-343.03(54.4%)	-294.98(47.6%)	-14.11(36.5%)	-28.94(49.5%)	
ΔE_{disp}	-30.41(4.8%)	-30.25(~5%)	-9.35(24.1%)	-7.44(12.73%)	
ΔE_{int}	-175.97	-127.37	-15.21(39.3%)	-43.34	

CDA	8CO@Li ₈ ExBox ⁴⁺			8H2@Li8ExBox4+			
analysis	ExBox to Li	ExBox to CO	Li-CO	ExBox to Li	ExBox to H ₂	Li-H ₂	
d	1.29721	0.00350	-0.00927	1.44325	0.00267	-0.00719	
b	0.00300	-0.00529	0.29693	0.01338	-0.00548	0.57090	
d-b	1.29830	0.00880	-0.30620	1.42987	0.00815	-0.58628	
r	-0.16241	-0.03195	-0.18178	-0.16292	-0.07131	-0.18322	

Table S9: CDA data for gas adsorbed ${\tt Li}_8{\tt ExBox^{4+}} complexes$

Fig. S1: Optimized geometries of different isomers of H₂@ExBox⁴⁺

Fig. S2: Molecular graphs showing bond paths, bond critical points (BCP, red dots) of $nH_2@ExBox^{4+}$

Fig. S3: Structures of model and nH₂@model (n=3,5)

Fig. S4: Molecular graphs showing bond paths, bond critical points (BCP, red dots) of $nH_2@model (n=3,5)$

Fig. S5: Snap shots of $(12H_2)_{exo} + (3H_2)_{endo}$ ($ExBox^{4+}$ thermostatic simulation at 77K temperature at different time steps

Fig. S6: Optimized geometries of different isomers of (CO)_{endo}@ExBox⁴⁺

Fig. S7: Optimized geometries and molecular graphs showing bond paths, bond critical points (BCP, red dots) of (nCO)_{endo}@ExBox⁴⁺; n=1,2,3

Fig. S8: Snap shots of (3CO)_{endo}@ExBox⁴⁺ under different simulation conditions at different time steps

Fig. S9: Optimized geometries of different isomers of Li@ExBox⁴⁺

Fig. S10: T-P phase diagrams showing variation of ΔG for (a) $8H_2$ (a) Li_8ExBox^{4+} (b) $16H_2$ (c) Li_8ExBox^{4+} and (c) $24H_2$ (d) Li_8ExBox^{4+}

Fig. S11: T-P phase diagrams showing variation of ΔG for (a) 8CO@ Li₈ExBox⁴⁺ and (b) 16CO@ Li₈ExBox⁴⁺

Fig. S12: Molecular graphs showing bond paths, bond critical points (BCP, red dots)