Effect of Ion Structure on Nanoscale Friction in Protic Ionic Liquids

James Sweeney¹, Grant B. Webber¹, Mark W. Rutland^{2,3}, Rob Atkin^{1,*}

¹Centre for Advanced Particle Processing and Transport, Newcastle Institute for Energy and

Resources, The University of Newcastle, Callaghan, NSW 2308, Australia

²Surface and Corrosion Science, Department of Chemistry, Royal Institute of Technology,

SE-100 44 Stockholm, Sweden

³SP Technical Research Institute of Sweden, Stockholm, Sweden

* To whom correspondence should be addressed.

Email: rob.atkin@newcastle.edu.au

Supporting Information

Figures

Figure A. Force as a function of apparent separation for a $\approx 5 \,\mu\text{m}$ diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in EAN. Forces are normalised by $2\pi R$, where *R* is the radius of the colloid probe.

Figure B. Force as a function of apparent separation for a $\approx 5 \ \mu$ m diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in PAN. Forces are normalised by $2\pi R$, where *R* is the radius of the colloid probe.

Figure C. Force as a function of apparent separation for a $\approx 5 \ \mu$ m diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in EAF. Forces are normalised by $2\pi R$, where *R* is the radius of the colloid probe.

Figure D. Force as a function of apparent separation for a $\approx 5 \ \mu$ m diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in PAF. Forces are normalised by $2\pi R$, where *R* is the radius of the colloid probe.

Figure E. Force as a function of apparent separation for a $\approx 5 \ \mu$ m diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in DMEAF. Forces are normalised by $2\pi R$, where *R* is the radius of the colloid probe.

Figure F. Force as a function of apparent separation for a $\approx 5 \ \mu m$ diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in EtAN. Forces are normalised by $2\pi R$, where *R* is the radius of the colloid probe.

Figure G. Shear force as a function of normal load at a sliding velocity of 30 μ m·s⁻¹ for each IL in this study. The shear force presented is the average of at least three normalised datasets taken with the same cantilever/colloidal probe combination. Squares: PAF, diamonds: PAN, triangles: EtAN, stars: EAN, circles: EAF, crosses: DMEAF. Forces are normalised by $2\pi R$, where *R* is the radius of the colloid probe.

Figure H. Shear force as a function of normal load at a sliding velocity of 20 μ m·s⁻¹ for each IL in this study. The shear force presented is the average of at least three normalised datasets taken with the same cantilever/colloidal probe combination. Squares: PAF, diamonds: PAN, triangles: EtAN, stars: EAN, circles: EAF, crosses: DMEAF. Forces are normalised by $2\pi R$, where *R* is the radius of the colloid probe.

Figure I. Shear force as a function of normal load at a sliding velocity of 10 μ m·s⁻¹ for each IL in this study. The shear force presented is the average of at least three normalised datasets taken with the same cantilever/colloidal probe combination. Squares: PAF, diamonds: PAN, triangles: EtAN, stars: EAN, circles: EAF, crosses: DMEAF. Forces are normalised by $2\pi R$, where *R* is the radius of the colloid probe.

Figure J. Shear force as a function of normal load at a sliding velocity of 5 μ m·s⁻¹ for each IL in this study. The shear force presented is the average of at least three normalised datasets taken with the same cantilever/colloidal probe combination. Squares: PAF, diamonds: PAN, triangles: EtAN, stars: EAN, circles: EAF, crosses: DMEAF. Forces are normalised by $2\pi R$, where *R* is the radius of the colloid probe.

Figure K. Shear force as a function of normal load at various sliding velocities for a silica colloid probe sliding against a mica surface in PAN. Diamonds: $40 \ \mu m \cdot s^{-1}$, squares: $30 \ \mu m \cdot s^{-1}$, triangles: $20 \ \mu m \cdot s^{-1}$, crosses: $10.0 \ \mu m \cdot s^{-1}$, stars: $5 \ \mu m \cdot s^{-1}$. The dashed vertical line delineates the multilayer regime from the boundary regime.