Effect of Ion Structure on Nanoscale Friction in Protic Ionic Liquids

James Sweeney1, Grant B. Webber1, Mark W. Rutland2,3, Rob Atkin1,*

1Centre for Advanced Particle Processing and Transport, Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan, NSW 2308, Australia

2Surface and Corrosion Science, Department of Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

3SP Technical Research Institute of Sweden, Stockholm, Sweden

* To whom correspondence should be addressed.

Email: rob.atkin@newcastle.edu.au

Supporting Information

Figures

\textbf{Figure A.} Force as a function of apparent separation for a \(\approx 5 \) \(\mu \)m diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in EAN. Forces are normalised by \(2\pi R \), where \(R \) is the radius of the colloid probe.
Figure B. Force as a function of apparent separation for a $\approx 5 \, \mu\text{m}$ diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in PAN. Forces are normalised by $2\pi R$, where R is the radius of the colloid probe.

Figure C. Force as a function of apparent separation for a $\approx 5 \, \mu\text{m}$ diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in EAF. Forces are normalised by $2\pi R$, where R is the radius of the colloid probe.
Figure D. Force as a function of apparent separation for a $\approx 5 \ \mu$m diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in PAF. Forces are normalised by $2\pi R$, where R is the radius of the colloid probe.

Figure E. Force as a function of apparent separation for a $\approx 5 \ \mu$m diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in DMEAF. Forces are normalised by $2\pi R$, where R is the radius of the colloid probe.
Figure F. Force as a function of apparent separation for a $\approx 5 \, \mu m$ diameter silica colloid probe approaching (blue diamonds) and retracting from (red diamonds) a mica surface in EtAN. Forces are normalised by $2\pi R$, where R is the radius of the colloid probe.

Figure G. Shear force as a function of normal load at a sliding velocity of $30 \, \mu m \cdot s^{-1}$ for each IL in this study. The shear force presented is the average of at least three normalised datasets taken with the same cantilever/colloidal probe combination. Squares: PAF, diamonds: PAN, triangles: EtAN, stars: EAN, circles: EAF, crosses: DMEAF. Forces are normalised by $2\pi R$, where R is the radius of the colloid probe.
Figure H. Shear force as a function of normal load at a sliding velocity of 20 μm·s$^{-1}$ for each IL in this study. The shear force presented is the average of at least three normalised datasets taken with the same cantilever/colloidal probe combination. Squares: PAF, diamonds: PAN, triangles: EtAN, stars: EAN, circles: EAF, crosses: DMEAF. Forces are normalised by $2\pi R$, where R is the radius of the colloid probe.

Figure I. Shear force as a function of normal load at a sliding velocity of 10 μm·s$^{-1}$ for each IL in this study. The shear force presented is the average of at least three normalised datasets taken with the same cantilever/colloidal probe combination. Squares: PAF, diamonds: PAN, triangles: EtAN, stars: EAN, circles: EAF, crosses: DMEAF. Forces are normalised by $2\pi R$, where R is the radius of the colloid probe.
Figure J. Shear force as a function of normal load at a sliding velocity of 5 μm·s⁻¹ for each IL in this study. The shear force presented is the average of at least three normalised datasets taken with the same cantilever/colloidal probe combination. Squares: PAF, diamonds: PAN, triangles: EtAN, stars: EAN, circles: EAF, crosses: DMEAF. Forces are normalised by 2πR, where R is the radius of the colloid probe.

Figure K. Shear force as a function of normal load at various sliding velocities for a silica colloid probe sliding against a mica surface in PAN. Diamonds: 40 μm·s⁻¹, squares: 30 μm·s⁻¹, triangles: 20 μm·s⁻¹, crosses: 10.0 μm·s⁻¹, stars: 5 μm·s⁻¹. The dashed vertical line delineates the multilayer regime from the boundary regime.