Supplementary Information

Ligand-stabilized Pt nanoparticles (NPs) as novel materials for catalytic gas sensing: Influence of the ligand on important catalytic properties

Eva Morsbach¹, Eike Brauns², Thomas Kowalik³, Walter Lang², Sebastian Kunz¹*, Marcus Bäumer¹

Figure S1: Cyclic voltammogram of DAO-Pt before (black) and after (gray) H₂ oxidation. The Pt reduction peak between 700 – 200 mV (negative sweep) is proportional to the amount of free Pt surface atoms. The shift to higher potentials is due to bigger crystallites (= sintering of NPs).

Figure S1 shows the cyclic voltammogram of DAO-Pt before and after H₂ oxidation. The peak areas of a cyclic voltammogram are proportional to the surface area of the sample. The decreased peak areas after H₂ oxidation confirm a loss of the catalyst’s surface area after H₂ oxidation. Additionally, the Pt reduction peak (negative sweep between 200-700 mV) shifts to higher potentials, which indicates that
bigger Pt crystallites instead of nanoparticles are the catalytically active species.13 It can thus be concluded that the deactivation of the sensor can be related to sintering of the catalytically active NPs.

Table S 1: Ligand coverage of Pt NPs for different ligands

<table>
<thead>
<tr>
<th>Ligand coverage</th>
<th>“pure” Pt NPs</th>
<th>HDA-Pt</th>
<th>aniline-Pt</th>
<th>DAO-Pt</th>
<th>PDA-Pt</th>
<th>BiPy-Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligand coverage</td>
<td>0</td>
<td>1</td>
<td>0.92</td>
<td>0.39</td>
<td>0.47</td>
<td>0.34</td>
</tr>
</tbody>
</table>

The ligand coverages for ligand-linked NPs have been determined via the electrochemical surface area. Determination via elemental ratios by AAS/elemental analysis does not reflect the ligand coverages due to different degrees of cross-linking for the bifunctional ligands.9

Figure S2: Response of an activated sensor that is kept at operating temperature without the presence of H\textsubscript{2} (t < 0s) towards a hydrogen pulse.

Figure S2 shows the immediate response of an activated sensor that is kept under operating conditions but without the presence of H\textsubscript{2}. No additional activation is required after the pre-treatment and the sensor achieves 90% of its maximum output of 220 mV within <150 ms.6
An essential requirement for hydrogen sensors is a constant response towards H\(_2\) over several runs. Figure S3 shows a long-term run of a PDA-Pt sensor that was kept at operating conditions for several weeks without a constant stream of hydrogen. Every 5th day the sensor was exposed to 1 vol% of H\(_2\) and the output signal was recorded. During these measurements, the hydrogen concentration has been increased and decreased stepwise from 0 vol% to 1 vol% H\(_2\) with stepsizes of 0.1 vol% H\(_2\). The stepwise response of the sensor towards H\(_2\) on day 20 is displayed as an inset in Fig.S3. All obtained changes were within the limit of the experimental accuracy.
Figure S4: Reflection-IR spectrum of BiPy-Pt before and after H₂ oxidation.