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1. Computation of free energy of oxidation and reorganization energy 

Free energy of oxidation and reorganization energy were approximated from the total energy 

differences computed using the B3LYP functional[1] and the 3-21G* basis set (all structures were 

optimized at this level).  Polarized Continuum Model (PCM)[2] was included to mimic solvent 

effects in DSSCs, using the solvent parameters appropriate for acetonitrile. The model was built 

with a solvent excluding surface (SES), where the overlapping index between two interlocking 

spheres was 0.8 and the minimum radius was 0.5 Å. Construction of SES was based on the GePol 

method and the set of atomic radii was defined according to the UAKS model.[3]  All quantum 

chemical calculations of this work were performed with Gaussian03.[4]  The computational 

approach to calculate ΔG and λ was identical to that adopted by Maggio et. al. [5]. The largest dye 

considered (Dye 50) has 699 basis functions and the set of calculation cannot be performed on a 

semi-automatic fashion with a much larger basis set due to very slow convergence of the 

computational procedure. For this reason the 7 dyes from the original data set with more than 

760 basis function (at the 3-21G* level) have not been included in the analysis. We have also 

excluded 2 dyes from the original work because they did not have a single carboxylic anchoring 

group and the single dye with efficiency 0.05% (clearly an outlier).    

2. Computation of the surface coverage and the surface dipole density  

All dyes have the same (carboxylic) anchoring group and are assumed to adopt the same 

orientation on the anatase[100] surface as the model compound benzoic acid investigated in 

ref.[6] (the adsorption mode is non-dissociative molecular mono-dentate).  We have therefore 

rotated the optimized geometry of each dye into the orientation of the benzoic acid on anatase 

so that the plane of the C-COO group of the reoriented molecule was the same as in the benzoic 

acid and the C-COO bond was pointing in the same direction as the reference.  The anatase[100] 

plane in the reference structure was perpendicular to the z Cartesian axis so that the molecular 
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electrical dipole moment of the rotated molecule in the z direction was used to establish any 

correlation between surface dipole and efficiency. The area occupied by the molecule in the xy 

plane was estimated by projecting the atomic coordinates in the xy plane and assuming that 

each atom span a circle of radius 1.5 Å. 

 

Figure S1. (a) Structure of the optimized model anchoring molecule on anatase(100) and (b) assumed 

structure of dye 4 on the surface for computing the surface coverage and electrical dipole moment 

perpendicular to the surface.    

3. Computation of the absorption spectrum and its overlap with solar spectrum  

The excitation energies and their corresponding oscillation strength to compute adsorption spectrum 

were obtained by single-point TDDFT calculations with 6-31G* basis set, B3LYP functional and PCM 

and solvent effects included as in the calculation of reorganization energy.  The input geometries were 

the optimized geometries of neutral dyes from B3LYP/3-21G* calculations (we have performed few 

tests with full optimization at the 6-31G* level reported below). The number of excited states included 

in the calculation was set to 11 as the lowest energy of the 11
th
 excited state is typically closer to 4 eV 

with the lowest energy among all dyes being 3.5 eV. The calculation of the dye absorption above 3.5 eV 

is however not very important for DSSCs because the optical band gap of TiO2 is just above 3 eV. [7]
 

The solar spectrum employed was the AM 1.5 direct normal plus circumsolar spectrum taken from 

ASTM G173-03.
[8]

 The simulated absorption spectrum of dye k, ( )k E , was computed by:  

   
1/2

2 2 2( ) 2 exp( ( ) / 2 )i i

i

E f E E  


     

where Ei and fi were the excitation energy and the dimensionless oscillator strength for i-th transition 

respectively, σ was a broadening parameter of 0.2 eV. The integral for computing
kS was evaluated 

numerically in the range between 0 and 10.305 eV.  
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4. Computation of the orbital asymmetry 

OA was the Log of the ratio of the orbital density of LUMO (ODLUMO) to the orbital density of 

HOMO (ODHOMO) on the anchoring group. The OD of the molecular orbitals was computed by:  

 
, ,

( ),

MO i MO j MO ij

i anchor j

OD c c S    

where 
ijS  is the overlap between basis set function i and j, 

,i MOc  are the molecular orbital 

coefficients (MO is either LUMO or HOMO of the dye k,).  i ranges over all basis functions on the 

anchoring group of the molecule and j ranges over all basis functions of the molecule. The 

calculation on the neutral dye was used to obtain the molecular orbital coefficients. 

5. Comments on additional potential predictors 

With 52 data points it is not advisable to increase the number of predictors as this would 

generate only an apparently better fit (overfitting).  There are many alternatives to the 

parameters considered here and we excluded those that correlate very strongly with the chosen 

predictors.  For example the HOMO-LUMO gap correlates strongly with the absorption spectrum 

and the size of the dye correlates strongly with the reorganization energy (see figure S2). We 

excluded properties that may affect charge injection rates (like electronic properties of the 

excited states) as the charge injection is the fastest process, rarely determining the efficiency.  

Other property, e.g. single-triplet splitting, may become important for metal containing dyes not 

considered here.  We have deliberately excluded simpler topological descriptors used in drug 

discovery, e.g. number of aromatic rings, for which we are not aware of any physical basis for 

their relevance for the solar cell efficiency.  
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Figure S2.  Left: Correlation between HOMO-LUMO gap and the first excitation energies of the dyes. Both 

quantities are obtained from single-point TDDFT calculations with B3LYP/6-31G* in PCM. Right: 

Correlation between cavity volumes (the volumes of the cavities generated in PCM) and reorganization 

energies, λ. These strong correlations between these two pairs of parameters suggest it is not desirable to 

have both members of the pair in the set of predictors.   

 

6. Raw data for the analysis 

To allow alternative analysis of the data to the interested reader we report the raw data used 

for our analysis in Table S1.  

Table S1. The parameters used for the fitting. The first column reports the dye index as given in 

Table 1 of ref.7 in the main text and the second column the experimental efficiency. The 

columns 3-7 contain the computational data used as predictors for the model. 

Dye η / % G / eV / eV S NDD / D/Å2 OA 

1 6.8 -4.86 0.73 2.23 0.26 0.13 

2 6.6 -4.83 0.72 2.30 0.22 0.50 

3 5.9 -4.70 0.76 1.55 0.18 0.44 

4 6 -5.18 0.75 2.02 0.07 0.22 

5 7.2 -4.96 0.69 2.25 0.34 0.50 

6 7.7 -4.95 0.70 2.45 0.36 0.68 

7 8.2 -4.87 0.68 2.72 0.15 -0.35 

8 6.5 -5.08 0.67 2.97 0.37 0.74 

10 4.4 -5.00 0.69 2.85 0.12 0.69 

11 4.5 -4.81 0.75 1.95 0.32 0.68 
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12 2.9 -4.86 0.75 2.02 0.28 0.70 

13 2.3 -4.62 0.70 2.64 0.34 0.79 

14a 8 -4.90 0.61 2.63 0.09 1.06 

14b 4.8 -4.87 0.60 3.15 0.10 1.07 

15a 7.7 -4.91 0.62 2.40 0.08 0.76 

15b 5.4 -4.89 0.61 2.40 0.07 0.70 

17 6.7 -4.88 0.69 0.71 0.05 4.61 

18a 7.4 -4.93 0.63 2.18 0.07 0.93 

18b 5.5 -4.88 0.61 2.70 0.07 0.94 

19a 5.2 -5.27 0.70 2.12 0.18 0.55 

19b 3.8 -5.14 0.70 2.53 0.17 0.50 

20 3 -4.68 0.72 2.00 0.24 0.61 

21 4.5 -5.13 0.70 2.02 0.05 0.99 

22 8 -4.92 0.62 2.65 0.08 1.06 

23a 5.2 -5.01 0.66 1.90 0.10 1.22 

24 3.4 -5.12 0.74 2.77 0.07 0.26 

26 2.5 -5.42 0.81 0.96 0.19 0.34 

27 5.2 -5.19 0.72 1.43 0.18 0.63 

28 7.3 -5.05 0.72 1.55 0.18 0.46 

29 9.1 -5.06 0.70 1.99 0.18 0.97 

30 5.9 -5.05 0.69 1.94 0.17 0.60 

31 6.9 -4.79 0.74 2.01 0.17 0.68 

32 6.2 -5.03 0.69 2.11 0.18 0.91 

33 7 -4.85 0.65 2.66 0.19 0.90 

34 6.6 -4.92 0.66 2.77 0.23 0.75 

35 2.3 -4.88 0.77 1.89 0.26 0.43 

37 3.8 -5.10 0.67 1.73 0.46 0.61 

38 1.2 -4.88 0.70 1.82 0.18 0.28 

39 6.2 -4.61 0.80 2.52 0.21 1.49 

40 3.9 -4.61 0.68 3.26 -0.04 -1.07 

41 5.5 -5.17 0.94 0.61 -0.09 0.60 

42 1.9 -5.07 0.87 1.17 0.18 -0.24 

43 6.1 -5.00 0.69 2.34 0.02 -0.69 

44 9 -4.96 0.65 2.67 0.01 -0.44 

45 5.5 -5.02 0.67 2.71 0.00 -0.49 

46 9.5 -4.91 0.64 2.78 -0.01 -0.36 

47 5.1 -4.98 0.77 1.57 0.01 -0.90 

48 5.4 -4.95 0.67 1.65 0.15 0.56 

49 7.2 -4.72 0.59 1.71 0.07 0.80 

50 6 -4.84 0.58 3.27 0.10 -3.63 

51 2.9 -4.55 0.73 2.58 -0.03 0.95 

52 6 -5.05 0.64 2.12 0.08 -0.13 
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7. Results of the simple fitting 

The results of fitting the data with the expression 2 2

exp a b G c G d e          are given in 

Table S2, including the 95% confidence interval in the fitting parameters. The interval is 

reported for completeness but it is not very meaningful considering the nature of the data, i.e. it 

is known that additional effects beyond G  and   contribute to the coupling.  A better way to 

evaluate the quality of the fitting is to consider the distribution of the difference between actual 

efficiency and efficiency computed by the fitting above (given in figure 2b of the main 

manuscript, the standard deviation was 1.67 %).  

Table S2. Results of polynomial fitting. 

Parameter Fitted 
value 

95% confidence 
interval 

Units 

a -290.1 -585.6 : 5.32 % 

b -125.9 -243.0 : -8.77 % eV-1 

c -12.67 -24.54 : -0.804  % eV-1 

d -37.22 -128.28 : 53.8 % eV-2 

e 19.32 -42.64 : 81.38 % eV-2 

 

8. A general linear regression model 

We have preliminarily constructed a quantile plot (with respect to the Gaussian distribution) of 

the response variable  (Figure S3) showing that its distribution can be reasonably 

approximated by a Gaussian distribution, as implied in the simplified model.  
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Figure S3. Q-Q plot of the variable  with respect to the Gaussian distribution.  

Based on this graph, we will consider satisfying the approximation of the distribution of  by a 

Gaussian distribution. In a generalized linear model we indicate with X the vector of the 

predictors and possible non-linear functions of them (in our case for example X=

1 2( , , , , , ( ), ( ),...)G S DD OA g G g   ). The expectation value of the efficiency conditional on a 

particular set of predictors is expressed formally as 

[ | ] ( ; )E f X X β             (S1) 

where β  is a parameter vector to be estimated and f  is a nonlinear additive function of the 

predictors, i.e. 1 1 1 2 2 2( ; ) ( ; ) ...f g X g X      . However, each of the kg  is a linear function of 

k , so overall f is a linear function of β . 

A simple linear regression model (i.e. when g  is the identity function and X the vector of the 

five linear predictors) gives rather poor results, as the calibration graph (obtained by bootstrap 

resampling[9]) illustrated in Figure S4 shows. 

-2 -1 0 1 2

2
4

6
8

Normal Q-Q Plot

Theoretical Quantiles

e
ta

Theoretical quantiles 








8 

 

 

Figure S4. Predicted vs. observed  for a simple linear regression. One hundred bootstrapped predictions 

of the model were averaged.  Apparent and bias-corrected estimates are reported. The mean absolute 

error for the bias-corrected estimates is 0.149. A perfect fit would lie on the dashed line. The tags on the 

upper part of the graph denote the coordinates of the predicted points (the graphs are obtained by 

smoothing). 

 

The bootstrapped shrinkage estimate is 0.75,[9] which denotes rather poor validation 

performance (i.e. about 25% lack of fitting). 

The poor fit might be explained with effective lack of complexity (as the above model is linear in 

the data).  We will therefore consider a more complex model; given the information provided by 

the Spearman 2  statistic (figure 1(e) in main manuscript) and the limited sample size, we will 

introduce nonlinearities for G  and  , but we will also consider penalisation. In the intuitive 

model we have simply introduced higher powers of G  and   in the fitting function but this is 

far from ideal when there is no physical reason for such an expansion; furthermore, polynomials 

have some undesirable properties, most notably non-locality (the fit in one region can be greatly 

affected by data in other regions;) finally, polynomials tend to infinity quite rapidly when 

predicting out of the range of the data used for the fit.  
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A more general approach is to construct restricted (or natural) cubic regression splines where 

the nonlinear function takes the form (in this example it is a third order spline) 

 
0 lin 1 nonlin 2( ; )g X X X    β          (S2) 

where 
1X X , 

  3 3 33 1 2 1
2 1 2 3

3 2 3 2

( ) ( ) ( )
t t t t

X X t X t X t
t t t t

  

 
     

 
      (S3) 

and ( )z 
 is equal to z if z>0 and zero otherwise. Note 0 lin nonlin( , , )  β  is a parameter vector. 

Equation S2 is known as a third order restricted cubic spline (higher order can be defined but 

are not used here). Note that constant and linear terms are included in the expansion, and that 

for 3X t  the function is linear. The parameters 1 2 3, ,t t t  are known as the knots of the spline 

and are determined uniquely for the data set, being located respectively at the 0.1, 0.5 and 0.9 

quantile of the data for the predictor X . For the predictor G , the function ( )Gg G   has 

nodes 
1, Gt   -5.1685, 

2, Gt     -4.9277,  and 
3, Gt   -4.6784; for the predictor   the function 

( )g   has nodes 
1,t  0.6086, 

2,t   0.6936 and 
3,t  0.7734 (the units are eV). 

A general model containing all five predictors and the non-linearity in G  and   will have the 

following form: 

[ | , , , , ]E G S DD OA   

0 1 2 3 4 5( ; ) ( ; )Gg G g S DD OA          β β       (S4) 

The number of parameters in the above model is 8 (two each for the spline expansions; note 

that the intercept 0  is common to both and is made explicit, so it is not counted twice to avoid 

identifiability issues).  A widely accepted heuristic is to consider 1/20th to 1/10th of the sample 

size (52 in this case) as the upper bound for the number of parameters in the model. Violation of 

this limit can produce biased results and overfitting. However, it is possible to go beyond this 

limit by penalising model fitting criteria for complexity, as we describe below. 
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The common approach to fitting a model by maximisation of the likelihood function is 

equivalent to maximising the likelihood ratio (LR) 2  statistic of the model with respect to the 

“null” model (i.e. the model without any predictors; only 0  is trivially “fit” to the average of the 

response.)  

Akaike’s information criterion (AIC) provides a method for penalising the LR achieved by a 

given model for its complexity to obtain a more unbiased assessment of the model’s worth [9]. 

The AIC has the form 

 2AIC LR 2p              (S5) 

where p is the number of parameters in the model. As can be seen from the formula, a model 

with large p will reduce the effective LR, so the optimal model will result from a trade-off 

between maximising LR and reducing p. It turns out the above criterion can still be biased when 

the sample size is small, so the following corrected AIC is used, which also takes into account the 

sample size n 

2 1
AIC LR 2 1

1
C

p
p

n p


 
   

  
         (S6) 

From the formula we can see that a small sample size incurs a greater penalty than a large 

sample size; as the sample size tends to infinity AIC AICC
n
 . We have used AICC  as a model 

selection criterion. 

A look at the ANOVA table of the penalised model (Table S3) shows that there is some predictive 

power in G and , since they have the highest F statistics. Notice that the relation with  effect 

seems to be mostly linear. 
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Table S3. ANOVA table of full model. 

Factor degrees of 

freedom 

F test 

statistic 

p-value 

G 2 1.39 0.26 

  nonlinear 1 2.57 0.12 

 2 3.43 0.04 

  nonlinear 1 0.37 0.55 

NDD 1 0.07 0.79 

S 1 0.44 0.51 

OA 1 0.24 0.62 

 

Although it would be tempting to simplify the model and remove the remaining variables, it 

would also bias the results and produce optimistic estimates of the parameters’ covariance 

matrix (since we have “cheated” looking at a more complex hypothesis, and have already 

expended degrees of freedom.) Instead, we proceed with the following approach: produce a new 

set of “estimated efficiency” as predicted by the model, and then regress this “new” response 

variable (let’s call it Z) vs. the chosen subset of predictors. It can be shown [9] that this approach 

of “simplification by approximation” produces a final model for which confidence limits and 

statistical tests are unbiased and include the effects of model selection. The simplified model can 

be written as 

[ | , ]E Z G  0 1 2( ; ) ( ; )Gg G g    β β         (S7) 

The calibration graph in figure S5 shows the good performance of the reduced model. The 

bootstrapped shrinkage estimate is 0.99 and denotes good validation performance (i.e. about 

1% lack of fitting). The ANOVA table of the reduced model and its final parameters are given 

Tables S4 and S5.  
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Figure S5. Predicted vs. observed estimated efficiency Z. One hundred bootstrapped predictions of the 

model were averaged.  Apparent and bias-corrected estimates are reported. The mean absolute error for 

the bias-corrected estimates is 0.044. A perfect fit would lie on the dashed line. The tags on the upper part 

of the graph denote the coordinates of the predicted points (the graphs are obtained by smoothing.) 

Table S4. ANOVA table of reduced model. 

Factor degrees of 

freedom 

F test 

statistic 

p-value 

G 2 42.48 <0.0001 

  nonlinear 1 48.86 <0.0001 

 2 141.04 <0.0001 

  nonlinear 1 4.32 <0.0001 
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Table S5. Estimated coefficients of general linear regression model fit (reduced model). 

Parameter Fitted 
value 

95% confidence 
interval 

Units 

0  20.26 15.54:24.99 % 

1,lin  1.531 0.576:2.486 % eV-1 

1,nonlin  -3.699 -4.860:-2.537 
 

% eV-3 

2,lin  -9.613 -12.373:-6.853 
 

% eV-1 

2,nonlin  -0.036 
 

-2.556:2.483 % eV-3 

 

    

In conclusion, this more rigorous procedure for the regression of  vs. a set of predictors shows 

that the ones with the greatest predictive capability are G (with a strong nonlinear 

component) and  (mostly linear). 
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