Supporting Information

Epitope mapping of imidazolium cation in ionic liquid-protein interactions unveils the balance between hydrophobicity and electrostatics towards protein destabilisation

Micael Silvaa, Angelo Miguel Figueirodoa*, Eurico J. Cabritaa*

a REQUIMTE, CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Monte de Caparica, Portugal

CONTENTS

STD-NMR experiments

Figure S1 - [C4dmim][Cl]
Figure S2 - [C3Oimim][Cl]
Figure S3 - [C2OHmim][Cl]
Figure S4 - [C4mim][dca]
Figure S5 - [C2mim][dca]
Figure S6 - [C2OHmim][dca]

Competition STD-NMR experiments

Figure S7 - [C2mim][Cl] vs. [C4mim][Cl]
Figure S8 - [C2mim][Cl] vs. [C2OHmim][Cl]

Anion-protein interaction - IL titrations with HSA followed by 35Cl NMR

Figure S10 - [C2mim][Cl]
Figure S11 - [C4mim][Cl]
Figure S12 - [C4dmim][Cl]
Figure S13 - [C2mim][Cl]
Figure S14 - [C4dmim][Cl]
Figure S15 - [C3Oimim][Cl]
Figure S16 - [C2OHmim][Cl]

Table S1 – NMR determined self-diffusion coefficient value of HDO in IL solutions with different HSA concentrations
STD-NMR experiments

Figure S1 – Top – STD NMR spectrum of 5 mM [C₄dmim][Cl] with 50 μM human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments.

Figure S2 – Top – STD NMR spectrum of 5 mM [C₃Omim][Cl] with 50 μM human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments. H2 exchanges with D₂O over time and therefore its STD response can not be accurately determined.
Figure S3 – Top – STD NMR spectrum of 5 mM [C_2OHmim][Cl] with 50 μM human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments.

Figure S4 – Top – STD NMR spectrum of 5 mM [C_4mim][dca] with 50 μM human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments. H2 exchanges with D_2O over time and therefore its STD response can not be accurately determined.
Figure S5 – Top – STD NMR spectrum of 5 mM [C₃mim][dca] with 50 μM human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments. H₂ exchanges with D₂O over time and therefore its STD response can not be accurately determined.

Figure S6 – Top – STD NMR spectrum of 5 mM [C₅Omim][Cl] with 50 μM human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments.
Figure S7 – Top – STD NMR spectrum of 2.5 mM [C$_2$ mim][Cl] and [C$_2$OH mim][Cl] with 50 µM human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments.

Figure S8 – Top – STD NMR spectrum of 2.5 mM [C$_2$ mim][Cl] and [C$_4$ mim][Cl] with 50 µM human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments.
Figure S9 – Effect of HSA addition on the ^{35}Cl resonance of a sample containing 5 mM $[\text{C}_2\text{mim}][\text{Cl}]$ in D$_2$O (500 µL). Increased HSA concentration was achieved through the addition of small volumes of 50 µM HSA, 5 mM $[\text{C}_2\text{mim}][\text{Cl}]$ to maintain the total concentration of chlorine constant. From bottom to top: volumes added in µL (HSA concentration in µM): 0 (0), 10 (0.98), 20 (1.92), 30 (2.83), 50 (4.55), 75 (6.52), 100 (8.33), 150 (11.54), 225 (15.52), 300 (18.75), and 360 (20.93). Top spectrum: 50 µM HSA, 5 mM $[\text{C}_2\text{mim}][\text{Cl}]$.
Figure S10 – Effect of HSA addition on the ^{35}Cl resonance of a sample containing 5 mM [C$_4$ mim][Cl] in D$_2$O (500 μL). Increased HSA concentration was achieved through the addition of small volumes of 50 μM HSA, 5 mM [C$_4$ mim][Cl] to maintain the total concentration of chlorine constant. From bottom to top: volumes added in μL (HSA concentration in μM): 0 (0), 10 (0.98), 20 (1.92), 30 (2.83), 50 (4.55), 100 (8.33), 150 (11.54), 225 (15.52), 300 (18.75), and 385 (21.75). Top spectrum: 50 μM HSA, 5 mM [C$_4$ mim][Cl].
Figure S11 – Effect of HSA addition on the 35Cl resonance of a sample containing 5 mM [C$_4$dmim][Cl] in D$_2$O (500 µL). Increased HSA concentration was achieved through the addition of small volumes of 50 µM HSA, 5 mM [C$_4$dmim][Cl] to maintain the total concentration of chlorine constant. From bottom to top: volumes added in µL (HSA concentration in µM): 0 (0), 10 (0.98), 20 (1.92), 30 (2.83), 50 (4.55), 75 (6.52), 100 (8.33), 150 (11.54), 225 (15.52), 300 (18.75), and 360 (20.93). Top spectrum: 50 µM HSA, 5 mM [C$_4$dmim][Cl].
Figure S12 – Effect of HSA addition on the 35Cl resonance of a sample containing 5 mM [C$_3$Oim][Cl] in D$_2$O (500 μL). Increased HSA concentration was achieved through the addition of small volumes of 50 μM HSA, 5 mM [C$_3$Oim][Cl] to maintain the total concentration of chlorine constant. From bottom to top: volumes added in μL (HSA concentration in μM): 0 (0), 10 (0.98), 20 (1.92), 30 (2.83), 50 (4.55), 75 (6.52), 100 (8.33), 150 (11.54), 225 (15.52), 300 (18.75), and 360 (20.93). Top spectrum: 50 μM HSA, 5 mM [C$_3$Oim][Cl].
Figure S13 – Effect of HSA addition on the 35Cl resonance of a sample containing 5 mM [C$_2$OHmim][Cl] in D$_2$O (500 µL). Increased HSA concentration was achieved through the addition of small volumes of 50 µM HSA, 5 mM [C$_3$Omim][Cl] to maintain the total concentration of chlorine constant. From bottom to top: volumes added in µL (HSA concentration in µM): 0 (0), 10 (0.98), 20 (1.92), 30 (2.83), 50 (4.55), 75 (6.52), 100 (8.33), 150 (11.54), 225 (15.52), 300 (18.75), and 360 (20.93). Top spectrum: 50 µM HSA, 5 mM [C$_2$OHmim][Cl].
Table S1 - NMR determined self-diffusion coefficient of HDO in IL solutions with different HSA concentrations

<table>
<thead>
<tr>
<th></th>
<th>0 µM HSA (×10⁻⁹ m²/s)</th>
<th>21.75 µM (×10⁻⁹ m²/s)</th>
<th>50 µM (×10⁻⁹ m²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C₄mim][Cl]</td>
<td>1.68 ± 0.01</td>
<td>1.68 ± 0.01</td>
<td>1.67 ± 0.01</td>
</tr>
<tr>
<td>[C₄dmim][Cl]</td>
<td>1.67 ± 0.01</td>
<td>1.68 ± 0.01</td>
<td>1.67 ± 0.01</td>
</tr>
<tr>
<td>[C₂mim][Cl]</td>
<td>1.69 ± 0.01</td>
<td>1.68 ± 0.01</td>
<td>1.65 ± 0.01</td>
</tr>
<tr>
<td>[C₃Omic][Cl]</td>
<td>1.69 ± 0.01</td>
<td>1.68 ± 0.01</td>
<td>1.66 ± 0.01</td>
</tr>
<tr>
<td>[C₂OHmim][Cl]</td>
<td>1.69 ± 0.01</td>
<td>1.68 ± 0.01</td>
<td>1.68 ± 0.01</td>
</tr>
</tbody>
</table>