How protein structure affects redox reactivity: example of Human centrin 2.

Abdeslam Et Taouil, Emilie Brun, Patricia Duchambon, Yves Blouquit, Manon Gilles, Emmanuel Maisonhaute*, Cécile Sicard-Roselli*

Figure S1. a) Hscen 2 and Tyrosine concentration evolution as a function of the irradiation dose determined by liquid chromatography. Yield determined: \(G_{(\text{Hscen}2)} = 0.57 \pm 0.05 \mu \text{molJ}^{-1} \), \(G_{(\text{Tyr})} = 0.27 \pm 0.04 \mu \text{molJ}^{-1} \). b) Dimer concentration evolution as a function of the irradiation dose determined by liquid chromatography. Yield determined: \(G_{(\text{Hscen}2\text{Dimer})} = 0.26 \pm 0.02 \mu \text{molJ}^{-1} \), \(G_{(\text{TyrDimer})} = 0.046 \pm 0.002 \mu \text{molJ}^{-1} \).
Figures S2. Cyclic voltammograms of Hscen2 (0.2 mM) in 0.2 M NaCl aqueous solution at different scan rates onto a 125 µm diameter gold electrode.
Figure S3. Cyclic voltammograms of 0.2 mM tyrosine in 0.5 M LiNO$_3$ aqueous solution on a 1 mm diameter glassy carbon electrode at different scan rates.
Figure S4. Cyclic voltammograms of Δ25 Human centrin 2 (0.2 mM) in 0.2 M NaCl aqueous solution at different scan rates onto a 125 µm diameter gold electrode.

Figure S5. Experimental (solid line) and simulated cyclic voltammograms (dots) of Δ25 Human Centrin 2 (0.2 mM) in 0.2 M NaCl aqueous solution at 1000 Vs⁻¹ onto a 125 µm diameter gold electrode. The background current is subtracted. Simulation parameters: $E^0 = 0.765$ V vs AgCl/Ag diffusion coefficient $D_{Δ25} = 8.2 \times 10^{-7}$ cm² s⁻¹, $k_{dim} = 1.45 \times 10^4$ L mol⁻¹ s⁻¹, layer thickness = 180 nm, [Δ25] = 59 mM. pH = 7.5.
Figure S6. Redox catalysis of 0.1 mM tyrosine in the presence of 11 µM Os(bpy)$_2$$^+$ (E$_{\text{Os(bpy)}2/3^+}$ = 623 mV/AgCl/Ag; E$_{\text{Tyrosine}}$ = 730 mV/AgCl/Ag; D$_{\text{Os(bpy)}2/3^+}$ = 6.10$^{-6}$ cm2.s$^{-1}$; D$_{\text{Tyrosine}}$ = 4.10$^{-5}$ cm2.s$^{-1}$; $k_{\text{dimerization}}$ = 107 M$^{-1}$.s$^{-1}$; K_{eq} = 1.5.105). Phosphate buffer concentrations of 10 (blue), 50 (green) and 100 (red) mM, k_{app} were found to be 3.5x106, 4.5x106 and 5.1x106 M$^{-1}$.s$^{-1}$, respectively. The fits are performed taking a diffusion coefficient D_{Tyrosine} of 4x10$^{-5}$ cm2.s$^{-1}$ in line with Fecenko et al. Such high value nevertheless seems overestimated in comparison with the one published recently by Wiegang et al. Nevertheless, introducing a larger k_{app} and a smaller D_{Tyrosine} did not lead to a correct fit since then the system shifted to the "total catalysis" zone as described by Saveant. Revisiting the model of Fecenko et $al.$ was however beyond the scope of this study.
Figure S7. Hscen2 circular dichroism signal evolution as a function of the temperature.

References.