Supporting information

Uniaxial tension-induced fracture in gold nanowires with the dependence of sizes and atomic vacancies

Fenying Wang,1,* Yanfeng Dai,1 Jianwei Zhao,2 Qianjin Li2

1 School of Chemistry, Material Science and Engineering, Nanchang University, Nanchang 330031, P. R. China

2 State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, P. R. China
Supplementary Multimedia Captions

Video S1 A movie of deformation behavior of the [100] single-crystal gold nanowire at the size I of \((3a \times 3a \times 9a)\), (Video S1.avi).

Video S2 A movie of deformation behavior of the [100] single-crystal gold nanowire at the size II of \((9a \times 9a \times 27a)\), (Video S2.avi)

Video S3 A movie of deformation behavior of the [100] single-crystal gold nanowire with the vacancy ratio of 4% at the size I of \((3a \times 3a \times 9a)\), (Video S3.avi)

Video S4 A movie of deformation behavior of the [100] single-crystal gold nanowire with the vacancy ratio of 35% at the size I of \((3a \times 3a \times 9a)\), (Video S4.avi)

Video S5 A movie of deformation behavior of the [100] single-crystal gold nanowire with the vacancy ratio of 0.6% at the size II of \((9a \times 9a \times 27a)\), (Video S5.avi)

Video S6 A movie of deformation behavior of the [100] single-crystal gold nanowire with the vacancy ratio of 30% at the size II of \((9a \times 9a \times 27a)\), (Video S6.avi)