Supporting Information

A Novel Photo-Responsive Azobenzene-Containing Nano-Ring Host for Fullerene Guest Facile Encapsulating and Releasing

Kun Yuana,b, Yi-Jun Guoa, Xiang Zhaoa,*

a Institute for Chemical Physics & Department of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
b College of Life Science & Chemistry, Tianshui Normal University, Tianshui, 741001, China

Corresponding Author
* Fax: +86 29 8266 8559. Tel: +86 29 8266 5671. E-mail: xzhao@mail.xjtu.edu.cn

Contents:

Figure S1. π-orbital axis vector (POAV)

Figure S2. Atom label of the [10]CPP, azobenzene and [4]AB for POVA and \(\theta_p \) listed in Table S1.

Table S1. The \(\theta_p \) (\(^\circ\)) of some selected C atom (see Figure S2) of the azobenzene, [10]CPP and [4]AB nanoring

Figure S3. Simulated UV-visible-NIR absorption spectrum compare for the trans-[4]AB, [4]AB\(\supseteq C_{60} \) and [4]AB\(\supseteq C_{70} \) host-guest complexes

* corresponding author, e-mail: xzhao@mail.xjtu.edu.cn
Figure S1. π-orbital axis vector (POAV) shown for a nonplanar conjugated carbon atom bonded to atoms 1, 2, 3, through the schematized σ bonds σ_1, σ_2, σ_3, and definition of the angles $\theta_{\sigma\pi}$ made by the π-orbital to each of the σ bonds.

Figure S2. Atom label of the [10]CPP, azobenzene and [4]AB for POVA listed in Table S1.
Table S1 the \(\theta_p (\circ) \) of some selected C atom (see Figure S2) of the azobenzene, [10]CPP and [4]AB nanoring

<table>
<thead>
<tr>
<th>Atom label</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10]CPP</td>
<td>3.89</td>
<td>2.45</td>
<td>2.45</td>
<td>3.88</td>
<td>1.09</td>
<td>1.11</td>
<td>3.87</td>
<td>3.91</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Azobenzene</td>
<td>0</td>
</tr>
<tr>
<td>[4]AB</td>
<td>4.10</td>
<td>2.29</td>
<td>2.30</td>
<td>3.82</td>
<td>1.42</td>
<td>1.55</td>
<td>3.84</td>
<td>1.43</td>
<td>1.58</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Equation S1

\[
\text{Strain} = E_0 - E_A - (E_B - 2E_C) \quad \text{Eq}(S1)
\]

Where \(E_0 \) is the energy of the free [4]AB nanoring, \(E_A \) is the energy of the open-ring structure (A) of the [4]AB, \(E_B \) is the energy of the open-ring structure (B) of the [2]AB, \(E_C \) is the energy of the azobenzene (C). For clarity, the structures of A, B and C are given below.