Supporting Information for

Enhancement of Visible Photocatalytic Performances of Bi$_2$MoO$_6$-BiOCl nanocomposite with plate-on-plate Heterojunction Structure

Du Yue1, Daimei Chen1,*, Zhihong Wang1, Hao Ding1,*, Ruilong Zong2, Yongfa Zhu2,*

1National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China

2Department of Chemistry, Tsinghua University, Beijing, 100084, PR China

*Corresponding author.

Tel.: +86 15801558907; fax: +86 10 82322974.

1E-mail: chendaimei@cugb.edu.cn; chendaimei0611.student@sina.com;

E-mail: dinghao@cugb.edu.cn

2E-mail: zhuyf@tsinghua.edu.cn
Figure S1 Apparent rate constants for the photocatalytic degradation RhB over BiOCl, Bi$_2$MoO$_6$ and Bi$_2$MoO$_6$-BiOCl composites under UV light.

Figure S2 Apparent rate constants for the photocatalytic degradation phenol over BiOCl, Bi$_2$MoO$_6$ and Bi$_2$MoO$_6$-BiOCl composites under UV light.
Figure S3 Apparent rate constants for the photocatalytic degradation RhB over BiOCl, Bi$_2$MoO$_6$, and Bi$_2$MoO$_6$-BiOCl composites under UV-vis light.

Figure S4 Apparent rate constants for the photocatalytic degradation phenol over BiOCl, Bi$_2$MoO$_6$, and Bi$_2$MoO$_6$-BiOCl composites under UV-vis light.
Fig S5 Photoluminescence (PL) spectra of BiOCl and 30% Bi$_2$MoO$_6$-BiOCl nanocomposite.