Supplementary Information

Photocatalytic performance of TiO$_2$-zeolite templated carbon composite in organic contamination degradation

Waleeporn Donphai,a,b Takashi Kamegawa,a,c Metta Chareonpanich,b Khanin Nueangnoraj,d Hirotomo Nishihara,d Takashi Kyotani,d Hiromi Yamashita*,a,e

a Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
b Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.
c Nanoscience and Nanotechnology Research Center, Osaka Prefecture University, 1-2 Gakuinencho, Nakaku, Sakai, Osaka 599-8570, Japan.
d Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan.
e Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan.
Fig. S1 (A) Nitrogen adsorption-desorption isotherm and (B) pore size distribution curve of each catalyst ((a) TiO$_2$-ZTC, (b) TiO$_2$-AC, and (c) TiO$_2$).
Fig. S2 UV-vis absorption spectra before and after methylene blue (MB) adsorption on different catalysts under dark condition: (a) initial methylene blue solution (concentration of 0.3 mM), (b) TiO$_2$ powder, (c) TiO$_2$-AC, and (d) TiO$_2$-ZTC. Inset shows photographic images of MB solutions.
Fig. S3 XRD pattern of each catalyst: (a) TiO$_2$-ZTC, (b) TiO$_2$-AC, and (c) TiO$_2$.